Supporting Information

From core-shell MoS_x/ZnS to open fullerene-like MoS₂ nanoparticles.

Elodie Blanco, Denis Uzio, Gilles Berhault, Pavel Afanasiev*

Scheme S1. Thiophene HDS reaction pathways.

Fig. S1 MoS_x particles obtained in the EG – sulfur mixture without addition of ZnS Scale bar is 200 nm.

Fig. S2 TEM image of ZnS seed obtained from the precipitation of $Zn(NO_3)_2$ (a) and $ZnCl_2$ (b) and Na_2S in ethylene glycol. Scale bar is 10 nm for both images. Note that dried powders are analyzed by TEM in which the particles are forcedly agglomerated, whereas in the colloidal suspension they are separated.

а

b

Fig. S3 Histograms of particle size for the sample with Mo/Zn = 1 as a function of thermal treatment: a) Mo/Zn = 1, b) Mo/Zn = 2.

Fig. S4 Relative area of the (002) MoS_2 XRD peak as a function of treatment temperature for the Mo/Zn =1 sample. Note the breakpoint above 400 °C corresponding to the completion of MoS_2 formation.

Figure S5 Zoom on the tempreatur evolution of MoS_2 (002) diffraction peak

Fig. S6. Pore size distribution in the solid treated under H_2/H_2S mixture at 400°C; Mo/Zn=1. Note the absence of the characteristic feature corresponding to the mesopores formed by ZnS release.

Zn	Mo/Z	Treatment	Treatment	Composition ^a	Mo/Z	Ssp ^c	Particle
precursor	n	T C°	gas		n	m²/g	Size, nm
					EDS		
Nitrate	1	initial	-	Zn _{0.97} MoS _{4.80}	2.9	- ^d	36
Nitrate	1	400	H_2/H_2S	Zn _{0.97} MoS _{3.11}	2.8	33	29
Nitrate	1	500	H_2/H_2S	Zn _{0.97} MoS _{3.13}	2.8	31	31
Nitrate	1	600	H_2/H_2S	Zn _{0.97} MoS _{3.07}	3.8	40	28
Nitrate	1	750	H_2/H_2S	Zn _{0.97} MoS _{3.03}	>50 ^b	59	28
Nitrate	1	750	H ₂	Zn _{0.97} MoS _{2.78}	>50	58	29
Nitrate	1	750	N ₂	Zn _{0.97} MoS _{3.08}	>100	Nd	27
Nitrate	2	initial	-	Zn _{0.44} MoS _{3.9}	4.5	-	60
Nitrate	2	400	H_2/H_2S	Zn _{0.44} MoS _{2.55}	4.2	25	47
Nitrate	2	750	H_2/H_2S	Zn _{0.44} MoS _{2.46}	>50	41	44
Nitrate	2	750	N ₂	Zn _{0.44} MoS _{2.67}	>100	38	46
Chloride	1	initial	-	Zn _{0.94} MoS _{4.60}	3.2	-	39
Chloride	1	400	H_2/H_2S	Zn _{0.94} MoS _{3.12}	2.9	30	33
Chloride	1	750	H_2/H_2S	Zn _{0.94} MoS _{3.01}	>50	57	29
Chloride	1	750	N ₂	Zn _{0.94} MoS _{3.00}	>100	58	31
Chloride	2	initial	-	$Zn_{0.48}MoS_{4.1}$	4.8	-	57
Chloride	2	400	H_2/H_2S	Zn _{0.48} MoS _{2.59}	4.5	30	48
Chloride	2	750	H_2/H_2S	Zn _{0.48} MoS _{2.46}	>100	47	46

Table S1 Preparation	conditions and som	e properties of the	solids studied in this work.
----------------------	--------------------	---------------------	------------------------------

^a – elemental analysis; ^b – in the MoS₂-containing part only; c – BET specific surface area; d – BET surface area of the initial samples can not be determined since they slowly decompose under outgasing conditions.