Electronic Supplementary Information (ESI)

Soft Templated Mesoporous Manganese Oxide/Carbon Nanotube Composite via Interfacial Surfactant Assembly

Chang-Wook Lee, Seung-Beom Yoon, Seong-Min Bak, Joah Han,

Kwang-Chul Roh* and Kwang-Bum Kim*

*E-mail: rkc@kicet.re.kr

Supporting Information

Fig. S1 (a) SEM and (b) TEM image of $MnO_4^-/CTA^+/CNT$; (c) FT-IR spectra of $MnO_4^-/CTA^+/CNT$ and the meso- MnO_2/CNT composite and (d) UV-vis spectra of the sampled $MnO_4^-/CTA^+/CNT$ solution.

Fig. S1a and b shows SEM and TEM images of $MnO_4^-/CTA^+/CNT$. As shown in SEM and TEM images, the thin coating layer on CNT surface was observed. Therefore, it is clear that the CNTs were uniformly coated with MnO_4^-/CTA^+ , while the 3D entangled porous structure of the CNTs was preserved. Fig. S1c shows the FT-IR spectra of $MnO_4^-/CTA^+/CNT$ and the mesoporous MnO_2/CNT composite. The characteristic signature of methylene (-CH₂) and methyl (-CH₃) C-H stretching vibrations from the surfactant microphase can be seen in the 2700–3100 cm⁻¹ region in the spectrum of the $MnO_4^-/CTA^+/CNT$.¹ The strong peak maxima were assigned to the -CH₂ symmetric and antisymmetric stretching modes; whereas, the

overlapping contributions were assigned to the $-CH_3$ symmetric and antisymmetric stretching modes.¹ The peaks around 750–800 cm⁻¹ were attributed to residual KMnO₄.

In contrast, these peaks were noticeably absent in the spectrum of the mesoporous MnO_2/CNT composite. UV-vis spectroscopy was used to observe changes in the concentration of MnO_4^- ions in the sampled $MnO_4^-/CTA^+/CNT$ solution. The sampled solution before centrifuging gave characteristic absorption bands of MnO_4^- at wavelengths of 525, 545, and 570 nm. However, these bands were completely absent after centrifuging, indicating that all of the MnO_4^- ions assembled with CTA^+/CNT . After remixing the centrifuged solution, the absorbance was recovered, suggesting the restoration of the homogeneous $MnO_4^-/CTA^+/CNT$ suspension.

Fig. S2 Electrode potential (E) and pH vs. time curves of meso-MnO₂ measured during the reduction of MnO_4^- ions.

Fig. S2 shows the change in the E and pH of the solution with time during the synthesis of the meso- MnO_2 . The changes in these parameters were very similar to those evident in regions c–f of the meso- MnO_2/CNT shown in Fig. 1a.

Fig. S3 TGA plots of meso-MnO₂/CNT obtained at 10 mL min⁻¹ air flow and a heating rate of 10° C min⁻¹.

Fig. S4 N_2 adsorption–desorption isotherms of (a) CNTs, (b) non-porous MnO_2/CNT and low-angle XRD patterns of (c) meso- MnO_2/CNT , (d) CNT.

Fig. S5 TEM images of (a) the meso- MnO_2/CNT composite and (b) meso- MnO_2 after surfactant removal.

Fig. S5 shows TEM images of the mesoporous MnO_2/CNT composite and mesoporous MnO_2 after surfactant removal. After surfactant removal, the mesoporous MnO_2/CNT composite and mesoporous MnO_2 exhibit disordered mesoporous structure caused by partial collapse of the mesoporous domains.

Table S1. Specific capacitance values for the meso- MnO_2/CNT composite and meso- MnO_2 at different scan rates.

	10 mVs ⁻¹	20 mVs ⁻¹	50 mVs ⁻¹	100 mVs ⁻¹	200 mVs⁻¹	500 mVs⁻¹	1000 mVs ⁻¹
Mesoporous MnO₂/CNT (based on composite mass)	220 Fg ⁻¹	213 Fg ⁻¹	201 Fg ⁻¹	188 Fg ⁻¹	170 Fg ⁻¹	139 Fg ⁻¹	112 Fg ⁻¹
	(100 %)	(97 %)	(91 %)	(85 %)	(77 %)	(63 %)	(51 %)
Mesoporous MnO₂/CNT (based on MnO₂ mass)	512 Fg ⁻¹	495 Fg ⁻¹	467 Fg ⁻¹	437 Fg ⁻¹	395 Fg ⁻¹	323 Fg ⁻¹	260 Fg ⁻¹
	(100 %)	(97 %)	(91 %)	(85 %)	(77 %)	(63 %)	(51 %)
Mesoporous MnO₂	125 Fg ⁻¹	105 Fg ⁻¹	83 Fg ⁻¹	71 Fg ⁻¹	60 Fg ⁻¹	48 Fg ⁻¹	40 Fg ⁻¹
	(100 %)	(84 %)	(67 %)	(57 %)	(48 %)	(39 %)	(32 %)
CNTs	111 Fg ⁻¹	100 Fg ⁻¹	93 Fg ⁻¹	86 Fg ⁻¹	77 Fg ⁻¹	69 Fg ⁻¹	62 Fg ⁻¹
	(100 %)	(90 %)	(83 %)	(77 %)	(69 %)	(62 %)	(56 %)

References

1. T. Clark, J. D. Ruiz, H. Y. Fan, C. J. Brinker, B. I. Swanson and A. N. Parikh, Chemistry of

Materials, 2000, 12, 3879-3884.