Supporting information

AuPd bimetallic nanoparticles decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction

Xiaomei Chen, *a,c Zhixiong Caib, Xi Chen*b and Munetaka Oyamac

1

^aCollege of Biological Engineering, Jimei University, Xiamen, 361021, China.
^bState Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
^cDepartment of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan

Email: xmchen@jmu.edu.cn

Fax: 86 592 6180470; Tel: 86 592 6181487

Supplementary Results

1. The preparation of AuPdNPs/GNs

(1) Size distribution histogram

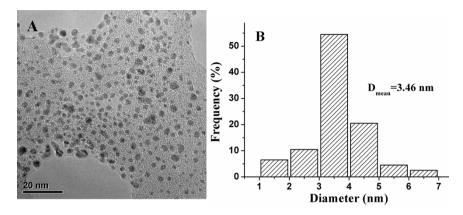


Fig. S1 (A) TEM image and (B) particle size distribution histogram of AuPdNPs/GNs.

(2) GNs effect

In the synthesis of GNs, 10 mL as-prepared GO solution was mixed with 10 mL water, 5 μ L hydrazine solution (35 wt% in water) and 35 μ L ammonia solution (25 wt% in water) in a 50 mL glass vial. Other synthesis procedures were the same with those of AuNPs/GNs.

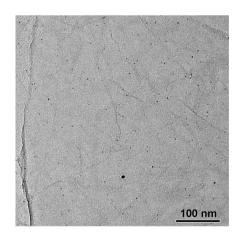


Fig. S2 TEM image of AuPdNPs/GNs synthesized by GNs with low reducing capability.

(3) XPS of C 1S

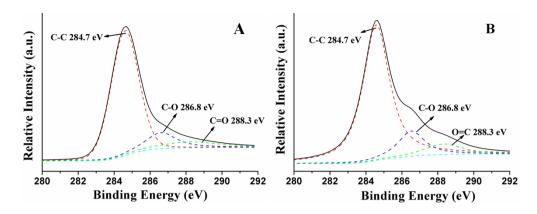


Fig. S3 The deconvoluted XPS spectra of C 1s (A) before and (B) after deposition of AuPdNPs

(4) XPS of Pd 3d

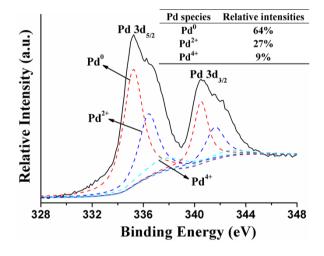


Fig. S4 The deconvoluted XPS spectra of Pd 3d.

(5) Time effect

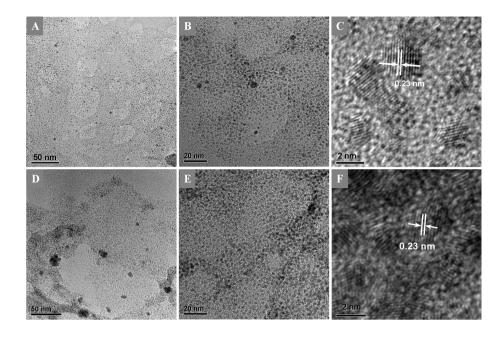
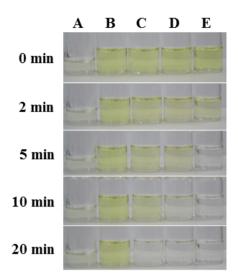


Fig. S5 TEM images of AuPdNPs/GNs stirring (A-C) for 5 min and (D-F) for 30 min.

(6) Size of NPs based on XRD results


Table S1 Summary of the calculation parameters based on XRD result.

Samples	b	θ	D* _{XRD} (nm)	D _{TEM} (nm)
AuPdNPs/GNs	1.2°	19.7°	6.94	3.46
AuNPs/GNs	2.3°	19°	3.61	3.15
PdNPs/GNs	1.4°	20.1°	5.96	2.67

^{*} $\mathbf{D}_{\mathbf{XRD}}$ is calculated according to Scherrer formula: D=0.89 λ /(Bcos θ), where λ is equal to 0.154056 nm, and B is equal to $\pi b/180^{\circ}$.

2. Details for catalytic reaction of reduction of 4-NP.

(1) Photo image

Fig. S6 Photo images of the color changed during the reaction. A: 4-NP; B: 4-NP+ NaBH₄; C: 4-NP+ NaBH₄+AuNPs/GNs; D: 4-NP+ NaBH₄+PdNPs/GNs; E: 4-NP+NaBH₄+AuPdNPs/GNs.

(2) UV-vis spectra

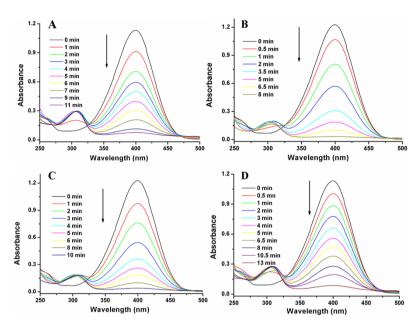
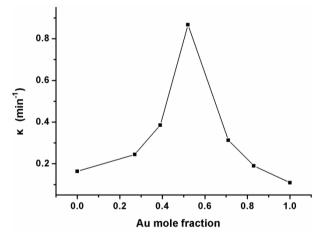



Fig. S7 The time-dependent UV-vis absorption spectra of reduction 4-NP by NaBH₄ in the presence of (A) $Au_{35}Pd_{65}NPs/GNs$, (B) $Au_{42}Pd_{58}NPs/GNs$ (C) $Au_{71}Pd_{29}NPs/GNs$ and (D) $Au_{82}Pd_{18}NPs/GNs$.

Fig. S8 The rate constants of the reaction (κ) versus mole fraction of Au for the AuPdNPs/GNs catalysts at different Au and Pd compositions.