Supporting Information

Confined space synthesis of fully alloyed AuPd nanoparticles

encapsulated in porous silica

Anupam Samanta, Thattarathody Rajesh and R. Nandini Devi*

Catalysis and Inorganic Chemistry Division, National Chemical Laboratory, Pune 411008, India.

Experimental Section

Synthesis of porous-silica encapsulated gold NP

Synthesis of porous-silica encapsulated gold NP has been reported in our previous communications.¹

Synthesis of palladium nanoclusters

Synthesis of palladium nanoclusters has been reported in our previous communications.²

Synthesis of porous-silica encapsulated palladium NPs

The Pd nanocluster solution (10 mL) was mixed with a 1:4 water/ethanol mixture (200 mL). 0.1m NaOH solution (0.9 mL) and tetraethyl orthosilicate (300 μ L, Aldrich, 98%) were added to this mixture and stirred at RT for 3 d. Silica-encapsulated palladium nanoclusters were separated from the reaction medium by centrifugation at 14000 rpm and redispersion in water several times. Silica-encapsulated Pd nanoclusters were dried at 100 °C and calcined at 550 °C under air at a ramp of 0.8 min⁻¹.

Details of calculations of CO (mole) conversion per Pd (mole) per second by the four catalysts

Calculation of CO amount passing through reactor per second

The flow rate of the reaction gas mixture is 25 mL min⁻¹ (1:5:15.7, CO:O₂:N₂).

Amount of CO in 25 mL gas mixture is =1.15 mL.

Temperature of the gas is = 28 °C= 301K.

Volume of CO at STP = 1.15X273/301 = 1.043 mL.

At STP volume of 1 mole CO is 22.4X10³ mL

Then at STP 1.043 mL of $CO = 0.046 \times 10^{-3}$ mole CO.

Then amount of CO gas passing through reactor per minute is 0.046×10^{-3} mole.

Then amount of CO gas passing through reactor per second 7.76×10^{-7} mole.

Then 100 % CO conversion = 7.76×10^{-7} mole CO conversion per second.

Catalyst Au3Pd@SiO₂

Amount of catalyst taken for CO oxidation = 17 mg

Loading of Pd based on ICP-AES = 1.1 %

Amount of Pd in 17 mg catalyst = 1.757×10^{-6} mole

Temperature	CO conversion	CO(mole) conversion s ⁻¹	CO(mole) conversion s ⁻¹
(°C)	(%)		$Pd (mole)^{-1}$
100	0	0	0
180	4	31.04X10 ⁻⁹	$1.76 X 10^{-2}$
190	7	54.32X10 ⁻⁹	3.08×10^{-2}
200	100	7.76X10 ⁻⁷	0.44

Catalyst AuPd@SiO₂

Amount of catalyst taken for CO oxidation = 17 mg

Loading of Pd based on ICP-AES = 1.6 %

Amount of Pd in 17 mg catalyst = 2.55×10^{-6} mole

Temperature	CO conversion	CO(mole) conversion s ⁻¹	CO(mole) conversion s ⁻¹
(°C)	(%)		$Pd (mole)^{-1}$
100	0	0	0
120	9	69.84X10 ⁻⁹	2.74X10 ⁻²
135	50	3.88X10 ⁻⁷	15.2X10 ⁻²
140	100	7.76X10 ⁻⁷	0.30

Catalyst AuPd10@SiO₂

Amount of catalyst taken for CO oxidation = 17 mg

Loading of Pd based on ICP-AES = 2.48 %

Amount of Pd in 17 mg catalyst = 3.956×10^{-6} mole

Temperature	CO conversion	CO(mole) conversion s ⁻¹	CO(mole) conversion s ⁻¹
(°C)	(%)		Pd (mole) ⁻¹
100	0	0	0
150	5	38.8X10 ⁻⁹	9.80X10 ⁻³
160	19	147.44X10 ⁻⁹	37.26X10 ⁻³
170	100	7.76X10 ⁻⁷	0.19

Catalyst Pd@SiO₂

Amount of catalyst taken for CO oxidation = 17 mg

Loading of Pd based on ICP-AES = 2.62 %

Amount of Pd in 17 mg catalyst = 4.18×10^{-6} mole

Temperature	CO conversion	CO(mole) conversion s ⁻¹	CO(mole) conversion s ⁻¹
(°C)	(%)		$Pd (mole)^{-1}$
100	0	0	0
150	4	31.04X10 ⁻⁹	7.42X10 ⁻³
160	12	93.12X10 ⁻⁹	22.27X10 ⁻³
170	100	7.76X10 ⁻⁷	0.185

Supporting Information Figure S1: EDAX spectra of a) Au3Pd@SiO₂, b) AuPd@SiO₂, C)

AuPd10@SiO₂, d) Pd@SiO₂ and respective microanalysis (insets).

a)

b)

C)

Supporting Information Figure S2: SEM elemental mapping analysis of a) Au3Pd@SiO₂, b) AuPd@SiO₂, C) AuPd10@SiO₂ and d) Pd@SiO₂

a)

Supporting Information Figure S3: HRTEM images of as-synthesized a) Au3Pd@SiO₂, b) AuPd@SiO₂ and C) AuPd10@SiO₂

Supporting Information Figure S4: TEM image of silica encapsulated gold nanoparticles. A Gatan digital camera (Orius SC 600 A, Gatan, 1024 x 1024 pixels) at 1000 –1000000 x magnification was used to record the micrographs. Sample synthesized by an excess of TEOS. 1 mL of 0.1 M NaOH and 200 μ L of TEOS were used for 5 mL of Au cluster solution. The product was filtered, dried and calcined at 500 °C.

. 5

Particle Size (nm)

Supporting Information Figure S5: Particle size distribution graph of a) Au3Pd@SiO₂, b) AuPd@SiO₂ and C) AuPd10@SiO₂ calcined at 550 °C.

a)

b)

C)

Supporting Information Figure S6: HRTEM images of a) Au3Pd@SiO₂, b) AuPd@SiO₂, and C) AuPd10, used for determining average particle size distribution. A Gatan digital camera (US 1000, Gatan2048 x 2048 pixels) at 51 - 1000000 x magnification was used to record micrographs.

Supporting Information Figure S7: Selected area TEM-EDX analysis of a) Au3Pd@SiO₂, b) AuPd@SiO₂ and C) AuPd10@SiO₂ and respective microanalysis (below).

Supporting Information Figure S8: UV-visible spectra of Au@SiO₂, Au3Pd@SiO₂, AuPd@SiO₂, AuPd0@SiO₂ and Pd@SiO₂.

C)

d)

e)

Supporting Information Figure S9: Rietveld refinement of a) Au@SiO₂, b) Pd@SiO₂, (reduced) C) Au3Pd@SiO₂, d) AuPd@SiO₂, and e) AuPd10@SiO₂.

Supporting Information Figure S10: Au XPS spectrum of AuPd10@SiO₂.

a)

b)

Supporting Information Figure S12: (top) N_2 adsorption – desorption isotherms of sample Au3Pd@SiO₂ (bottom) Pore size distribution calculated from the adsorption branch of the isotherms by DFT method.

N_2 uptake(cm ³ g ⁻¹ STP)	250
Total Pore Volume ^d (cm ³ g ⁻¹) ^a	0.38
Micropore Volume (cm ³ g ⁻¹) ^b	0.02

^aTotal pore volume measured at a relative pressure of $P/P_0 = 0.99$. ^b Calculated through t-plot analysis as a function of relative pressure using the Broekhoff de Boer model.

Supporting Information Figure S13: (top) N_2 adsorption – desorption isotherms of sample AuPd@SiO₂ (bottom) Pore size distribution calculated from the adsorption branch of the isotherms by DFT method.

N_2 uptake(cm ³ g ⁻¹ STP)	317
Total Pore Volume ^d $(cm^{3}g^{-1})^{a}$	0.49
Micropore Volume $(cm^3g^{-1})^b$	0.006

^aTotal pore volume measured at a relative pressure of $P/P_0 = 0.99$. ^b Calculated through t-plot analysis as a function of relative pressure using the Broekhoff de Boer model.

Supporting Information Figure S14: (top) N_2 adsorption – desorption isotherms of sample AuPd10@SiO₂ (bottom) Pore size distribution calculated from the adsorption branch of the isotherms by DFT method.

N ₂ uptake(cm ³ g ⁻¹ STP)	265
Total Pore Volume ^d $(cm^{3}g^{-1})^{a}$	0.41
Micropore Volume (cm ³ g ⁻¹) ^b	0.04

^aTotal pore volume measured at a relative pressure of $P/P_0 = 0.99$. ^b Calculated through t-plot analysis as a function of relative pressure using the Broekhoff de Boer model.

Supporting Information Figure S15: CO conversion with temperature by the four catalysts.

Supporting Information Figure S16: CO conversion as a function of time-on-stream by $Au@SiO_2$ at room temperature (28 °C).

Supporting Information Figure S17: HRTEM image of Au@SiO₂ catalyst after CO oxidation study.

Supporting Information Figure S18: Particle size distribution graph of a) Au3Pd@SiO₂, b) AuPd@SiO₂ and C) AuPd10@SiO₂ catalysts calcined at 750 °C.

References:

- 1. A. Samanta, B. B. Dhar and R. N. Devi, J. Phys. Chem. C, 2012, 116, 1748.
- 2. A. Samanta, B. B. Dhar and R. N. Devi, *ChemCatChem.*, 2013, 5, 1911.