Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary information

Figure S1. SEM images and EDX analyses of the $Li_2Mg[PO_4]F$ single crystal used for the data collection.

Figure S2. SEM and CCD images, and EDX analyses of the $Li_9Mg_3[PO_4]_4F_3$ single crystal used for the data collection.

Figure S3. Views of the tunnels running along the [010] (a), and [011] directions (b).

Li ₂ Ni[PO ₄]F:Li ₄ Ni ₂ [PO ₄] ₂ F ₂	Lil	Li2	Li3	Nil	Ni2	P1	P2	01	02	03	04	05	06	F1	F2
<i>Pnma</i> (no. 62)	8d	4c	4c	4a	4b	4c	4c	Bd	4c	4c	4c	4c	8d	4c	4c
$a = 10.4730 \mathrm{\AA}$	0.240	0.271	0.027	0	0	0.0236	0.2432	0.1891	0.2184	0.1694	0.3890	0.4739	0.0320	0.1272	0.4503
$b = 6.2887 \mathrm{\AA}$	0.012	1/4	1/4	0	0	1/4	1/4	0.0494	1/4	1/4	1/4	1/4	0.5517	1/4	1/4
c=10.8460 Å	0.335	0.582	0.27	0	1/2	0.7441	0.0781	0.0150	0.2167	0.7440	0.0522	0.6215	0.3195	0.4729	0.3838
¥	+	+	<	+	<	←	←	<	←	+	<	<	<	<	<
→	→	→	→	→	→	→	→	→	→	→	→	→	→	→	→
$\square_2 Mg_{1x}Fe_x Al_3 [BO_3] [SiO_4] O_2$	Vacant	Mg1	Al3	All	Al2	В	Si	90	01	Vacant	04	03	07	05	02
<i>Pnma</i> (no. 62)		4c	4c	4a	4b	4c	4c	Bd	4c		4c	4c	Bd	4c	4c
$a = 10.990 \mathrm{\AA}$		0.2812	0.0522	0	0	0.0003	0.2367	0.1703	0.2119		0.3789	0.4964	-0.0019	0.0992	0.4782
$b = 5.750 \mathrm{\AA}$		1/4	1/4	0	0	1/4	1/4	0.0239	1/4		1/4	1/4	0.5462	1/4	1/4
$c = 10.34 \mathrm{\AA}$		0.4067	0.2738	0	1/2	0.7492	0.0661	0.0077	0.2240		0.0263	0.6217	0.3196	0.4540	0.3813

Figure S4. Comparison of the atomic positions in $Li_2Ni[PO_4]F$ and $Mg_{1-x}Fe_xAl_3[BO_3][SiO_4]O_2$ structures.

Li,Ni[PO ₄]F subcell	Lil		Li2	Li3	liN		Ni2		P1	P2	01		02	03	04	05	90		F1	F2
Pnma (no. 62)	8d		4c	4c	4a		4b		4c	4c	84		4c	4c	4c	4c	8d		4c	40
$a_I = 10.4730$ Å	0.240		0.271	0.027	0		0		0.0236	0.2432	0.1891		0.2184	0.1694	0.3890	0.4739	0.0320		0.1272	0.4503
$b_I = 6.2887 \text{ Å}$	0.012		1/4	1/4	0		0		1/4	1/4	0.0494		1/4	1/4	1/4	1/4	0.5517		1/4	1/4
$c_I = 10.8460 { m \AA}$	0.335		0.582	0.276	0		1/2		0.7441	0.0781	0.0150		0.2167	0.7440	0.0522	0.6215	0.3195		0.4729	0.3838
Symmetry reduct	ion /				2		_				2						_			
2	_				_		_				_						_			
b, c, a	-						_										_			
1/2a+1/2b	→	7	→	→	→	7	→	7	→	→	→	7	→	→	→	→	∕ →		→	→
Li ₂ Ni[PO ₄]F supercell	Li1_1	Li1_2	Li2	Li3	Ni1_1	Ni1_2	Ni2_1	Ni2_2	P1	P2	01_{-1}	01_2	02	03	04	05	06_1	06_{2}	F1	F2
P 1 2 ₁ /c 1 (no. 14)	4e	4e	4e	4e	2d	2c	2b	2a	4e	4 <i>e</i>	4e	4e	4e	4e	4e	4e	4e	4 <i>e</i>	4e	4e
$a_2 = 6.2887 \text{ Å}$	0.488	0.012	0.25	0.25	1/2	0	1/2	0	0.75	0.25	0.4506	0.0494	0.25	0.75	0.25	0.25	0.0517	0.5517	0.25	0.25
$b_2 = 10.8460 { m \AA}$	0.335	0.335	0.582	0.276	0	0	0	0	0.2441	0.0781	0.0150	0.0150	0.2167	0.2440	0.0522	0.6215	0.8195	0.3195	0.4729	0.3838
$c_2 = 10.4730 \text{\AA}$	0.26	0.26	0.229	0.473	1/2	1/2	0	0	0.0236	0.2568	0.3109	0.3109	0.2816	0.1694	0.1110	0.0261	0.032	0.4680	0.3728	0.0497
$\beta = 90.00^{\circ}$																				
~	<	<	~	<	<	<	~	~	←	←	<	←	~	←	←	~	←	←	←	←
*	>	>	>	>	>	>	→	>	→	>	>	>	>	>	>	>	*	*	→	*
Li ₅ V[PO ₄] ₂ F ₂	LiS	Li6	Li3	Li4	Li2	V2	Lil	V1	P1	P2	05	08	07	04	90	01	02	03	F1	F2
<i>P</i> 1 2 ₁ / <i>c</i> 1 (no. 14)	4e	4e	4e	4e	2d	2c	2b	2 <i>a</i>	4e	4e	4e	4e	4e	4 <i>e</i>	4 <i>e</i>	4e	4 <i>e</i>	4 <i>e</i>	4 <i>e</i>	4 <i>e</i>
a = 6.3589 Å	0.5070	0.0323	0.2592	0.2552	1/2	0	1/2	0	0.74772	0.25859	0.4541	0.06013	0.26050	0.75630	0.23592	0.23725	0.05840	0.55243	0.22356	0.21151
$b = 10.7795 \text{\AA}$	0.3352	0.3357	0.5834	0.2763	0	0	0	0	0.24486	0.07934	0.0134	0.01826	0.21791	0.24439	0.05587	0.61931	0.82422	0.31585	0.47144	0.37695
c = 10.3836 Å	0.2687	0.2472	0.2285	0.4750	1/2	1/2	0	0	0.02391	0.25568	0.3044	0.31701	0.28313	0.17161	0.10923	0.02574	0.03365	0.46866	0.36779	0.05764
$b = 90.02^{\circ}$																				
Li ₅ Cr[PO ₄] ₂ F ₂	LiS	Li6	Li3	Li4	Li2	Cr2	Lil	Cr1	P1	P2	05	08	07	04	90	01	02	03	F1	F2
P 1 2 ₁ /c 1 (no. 14)	4e	4 <i>e</i>	4e	4 <i>e</i>	2d	2c	2b	2a	4e	4 <i>e</i>	4 <i>e</i>	4e	4e	4e	4 <i>e</i>	4e	4 <i>e</i>	4 <i>e</i>	4 <i>e</i>	4e
a = 6.3135 Å	0.479	0.021	0.272	0.276	1/2	0	1/2	0	0.7514	0.2606	0.4610	0.0624	0.2528	0.7394	0.2533	0.2511	0.0599	0.5408	0.2276	0.2134
$b = 10.7731 \mathrm{\AA}$	0.330	0.323	0.5913	0.2754	0	0	0	0	0.2465	0.0801	0.0112	0.0217	0.2242	0.2409	0.0553	0.6234	0.8209	0.3169	0.4742	0.3781
$c=10.4050\mathrm{\AA}$	0.2766	0.222	0.2391	0.4746	1/2	1/2	0	0	0.0246	0.2553	0.3052	0.3154	0.2799	0.1799	0.1142	0.0254	0.0334	0.4646	0.3720	0.0566
$b = 89.91^{\circ}$																				

Figure S5. Group-subgroup scheme in the Bärnighausen formalism [31, 32] for the structure of $Li_2Ni[PO_4]F$ and comparison with $Li_5M(PO_4)_2F_2$ (M = V and Cr) structures. The indices of the *translationengleiche* (*t*) transition, as well as the unit cell and origin shift transformations are given.

3.3.3. Effect of the Li/Na ratio on the compounds with the Li₂Ni[PO₄]F-type structure

When the lithium is replaced by sodium in Li₂Ni[PO₄]F, one would expect an increase of the cell parameters due to the large difference between the ionic radii of Li^+ and Na^+ . However, we observed that only the a and c cell parameters increased, whereas b decreased. This phenomenon has been also observed in the cobalt and iron $Li_{2-x}Na_xM[PO_4]F$ -5 systems (see the table in Fig. S6^{\dagger}). In order to explain the origin of this common behavior, projection views of the Ni2O₃F infinite chains in Li₂Ni[PO₄]F and Li_{1.3}Na_{0.7}Ni[PO₄]F are depicted on Fig. S6b, c[†], respectively. One can see clearly a significant tilt of the octahedra forming the Ni2O₃F infinite chains, when the lithium is partially replaced by sodium. The directions of the tilts are represented by green arrows on Fig. S6b⁺. As a consequence of these tilts, we observe an increase of the $a_{O4-F1-O4}$ angle from 148.84 to 160.37 °, a decrease of the $d_{O6-O6max}$ distance from 3.795 to 10 3.693 Å, and an increase of the $d_{\text{O6-O6min}}$ distance from 2.494 to 2.526Å. This flattening of the $\alpha_{\text{O4-F1-O4}}$ angle should induce an increase of the $d_{\text{Ni-Ni}}$ distance and the cell parameter b, since $b = 2 \times d_{\text{Ni-Ni}}$. This is in contradiction with experimental results which shows a decrease of cell parameter b. A more careful examination of the interatomic distances shows a decrease of the $d_{\text{O4-F1max}}$ from 3.264 to 3.156 Å and an increase of $d_{\text{O4-F1min}}$ from 2.509 to 2.654 Å. It is therefore concluded that when lithium is replace by sodium atoms, the Ni2O₃F infinite chains are first compressed along the *b*-axis 15 ($d_{\text{O4-F1max}}$, $d_{\text{Ni-Ni}}$, and b decrease) inducing some strains, which could be reduced by a relaxation along [100] ($d_{\text{O4-F1min}}$ and *a* increase) and a tilt of the Ni2O₄F₂ octahedra along [010] ($\alpha_{O4-F1-O4}$ and $d_{O6-O6min}$ increase, whereas $d_{O6-O6max}$ decreases). It is worth to mention that the $\alpha_{O4-F1-O4}$ angle is flexible and may reach 180 ° when the sodium content is increased.

However, since O6-O6 corresponds to the edge of the PO₄ tetrahedra, the increase of $d_{O6-O6min}$ distance is limited. This restrains the increase of the $\alpha_{O4-F1-O4}$ angle and induces a structural transition to a layered LiNaNi[PO₄]F structure when a 20 critical $d_{O6-O6min}$ distance is reached.¹¹ Similar to Ni2O₃F, the Ni1O₃F infinite chains are compressed along [010] ($d_{O5-F2max}$, d_{Ni-Ni} , and *b* decrease) however, the $\beta_{O5-F2-O5}$ angle is less flattened than $\alpha_{O4-F1-O4}$ (see table in Fig. S7[†]). The flattening of the $\alpha_{O4-F1-O4}$ angle affects strongly the coordination sphere of the Li3 atom (Fig. S6a[†]), whereas the flattening of the $\beta_{O5-F2-O5}$ angle affects little the coordination sphere of the Li2 atom (Fig. S7a[†]). In the cobalt, iron and magnesium Li_{2-x}Na_xM[PO₄]F-systems, the same behaviors as in the nickel-system are observed, when Na replaces Li (see the table in 25 Fig. S6, 7[†]).

04 06 13 76 05 F2 05 F		a)	Li ₂ Ni[]	PO ₄]F (b) Na/Li ra		i _{1.3} Na _{0.7} Ni[PC 06 06 Ni2 Ni2 0	D ₄]F (c)
c b		2 04 F1 04	$\begin{array}{c} \overbrace{d_{06-06}}^{6} \\ F1 \\ \hline \alpha \\ a_{04} \\ 04 \\ 3. \\ \hline a_{04} \\ 04 \\ F1 \\ \hline b \text{ cell particular states} \\ \end{array}$	$\begin{array}{c} & & & & & & \\ \hline & & & & & \\ & & & & & \\ & & & &$	F1 α	O4 F1 Ni2 O4	$\begin{array}{c} 06 \\ \hline 06 \\ \hline 100 \\ \hline 06 \\ \hline 06 \\ \hline 04 \\ \hline 0$	F1 G4 F1 b er
	Cel	l parame	ters		Structu	ral details ar	ound M2	
Compounds	a (Å)	b (Å)	c (Å)	$d_{\text{O4-F1min}}(\text{\AA})$	$d_{\text{O4-F1max}}(\text{\AA})$	$d_{\text{O6-O6min}}(\text{\AA})$	$d_{ m O6-O6max}({ m \AA})$	$\alpha_{\rm O4-F1-O4}$ (⁰)
Li ₂ Ni[PO ₄]F	10.4730	6.2887	10.8460	2.509	3.264	2.494	3.795	148.84
Li _{1.3} Na _{0.7} Ni[PO ₄]F	10.7874	6.2196	11.1780	2.654	3.156	2.526	3.693	160.37
Li ₂ Co[PO ₄]F	10.4520	6.3911	10.8740	2.341	3.335	2.493	3.899	144.53
LiNaCo[PO ₄]F	10.9334	6.2933	11.3556	2.762	3.185	2.539	3.754	162.22
Li _{1.65} Na _{0.35} Fe[PO ₄]F	10.5108	6.4996	11.0504	2.625	3.408	2.509	3.991	144.98
LiNaFe[PO ₄]F	10.9851	6.3686	11.4343	2.832	3.236	2.570	3.798	159.40

Figure S6. Projection view along [100] of the structure of $Li_2Ni[PO_4]F$ (a), and views of the infinite chains Ni2O₃F, in $Li_2Ni[PO_4]F$ (b) and $Li_{1.3}Na_{0.7}Ni[PO_4]F$ (c). Crystallographic details about the compounds with $Li_2Ni[PO_4]F$ -type structure are reported in the table.

	(a)	Li ₂ Ni[]	PO ₄]F	(b)		Li	i _{1.3} Na _{0.7} Ni[PC	₽ ₄]F (c)
01 05 F2 03 F2 P2		72 05 F2		01 $01F^2 01$	F2 N 05	a/Li ratio	7 05 F2		F^2
	64 F1	05 a F2	β <i>d</i> ₀₅ <i>f</i> ² <i>d</i> ₀₅ <i>f</i> ³ <i>f</i> ² <i>d</i> ₀₅ <i>f</i> ³ <i>f</i> ³ <i>f</i> ⁴ <i>f</i> ³ <i>f</i> ⁵ <i>f</i> ³ <i>f</i> ⁴ <i>f</i> ⁵ <i>f</i> ⁵	B 05 F2max 244 05 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2	$F^{2} = d$	β7 05-F2max	05 05 F2	$\begin{array}{c c} F_2 & \beta \\ \hline \beta & 05 \\ \hline F_2 3.190 & 05 \\ \hline N & 8 \\ \hline 05 & F_2 \\ \hline 05 & F_2 \\ \hline \end{array}$	F^2 F^2 c b
	Call		tons			Stanotural	i: Iotoila am	ound M1	
Compounds		$\frac{b}{b}$		d (Å)	d	$(\mathring{A}) d$	(Å)	davar (Å)	β_{1}
Li-Ni[PO4]F	10.4730	6.2887	10.8460	2.590	<u>**05-F2</u> 3.244	2.5	$\frac{-01\min(A)}{23}$	3.766	151.56
$Li_1 Na_0 Ni[PO_4]F$	10.7874	6.2196	11.1780	2.648	3.190	2.5	33	3.687	154.33
Li ₂ Co[PO ₄]F	10.4520	6.3911	10.8740	2.645	3.325	2.4	93	3.899	147.87
LiNaCo[PO ₄]F	10.9334	<u>6.293</u> 3	11.3556	2.730	3.241	2.5	30	3.763	152.36
Li _{1.65} Na _{0.35} Fe[PO ₄]F	10.5108	6.4996	11.0504	2.701	3.388	2.3	81	4.118	147.21
LiNaFe[PO ₄]F	10.9851	6.3686	11.4343	2.744	3.298	2.5	13	3.856	149.88

Figure S7. Projection view along [001] of the structure of $Li_2Ni[PO_4]F$ (a), and views of the infinite chains Ni1O₃F, in $Li_2Ni[PO_4]F$ (b) and $Li_{1.3}Na_{0.7}Ni[PO_4]F$ (c). Crystallographic details about the compounds with $Li_2Ni[PO_4]F$ -type structure are reported in the table.

Figure S8. Arrhenius plot of the ionic conductivity σ of Li₉Mg₃[PO₄]₄F₃ \Box_1 , in air. Closed squarea and open circles show samples of conbentinal and SPS sintering, respectively.

Figure S9. Arrhenius plots of the reluxation time τ^1 of Li₉Mg₃[PO₄]₄F₃ \Box_1 . Red closed and open squares show montions of lithium ion and anion, *e.g.* oxide and/or fluoride ion, respectively. Blue closed diamond is conserened with a mode of defective origin.³⁶

Figure S10. Observed, calculated and difference plots for the XRPD (Cu- $K\alpha$) radiation) profile refinement of the composite Li₆Mg₄[PO₄]₃[SO₄]F₃ material. The three phases Li₂SO₄, LiMg[PO₄] and Li₂Mg[PO₄]F clearly coexist.

Table S1. Anisotropic ADPs (Å²) for Li₂Mg[PO₄]F and Li₉Mg₃[PO₄]₄F₃. The anisotropic ADP

factor exponent takes	the form: $-2\pi^2[(ha^*)]$	$^{2}U_{11}++2hka*b*U$	$[I_{12}].$
autor emponent antes) 0 11 2 ///// 0 0	12].

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Li ₂ Mg[PO ₄]F						
Li1	0.0382(15)	0.0345(18)	0.0253(14)	0.0087(10)	0.0047(9)	0.0079(10)
Li2	0.0143(13)	0.0137(14)	0.0141(13)	0	0.0017(9)	0
Li3/Mg3	0.0266(13)	0.0043(9)	0.0145(9)	0	-0.0023(8)	0
Mg1	0.0093(3)	0.0100(3)	0.0085(3)	-0.00051(19)	-0.00085(15)	0.00112(15)
Mg22/Li22	0.0088(3)	0.0081(3)	0.0043(3)	0.00049(19)	0.00032(15)	-0.00042(15)
P1	0.0110(2)	0.0091(2)	0.0055(2)	0	0.00110(11)	0
P2	0.0067(2)	0.0087(2)	0.0080(2)	0	0.00035(11)	0
01	0.0096(4)	0.0102(3)	0.0166(4)	-0.0013(3)	-0.0020(2)	-0.0014(3)
O2	0.0168(6)	0.0180(5)	0.0090(5)	0	0.0023(4)	0
O3	0.0113(6)	0.0262(6)	0.0131(5)	0	0.0022(4)	0
O4	0.0081(5)	0.0106(4)	0.0171(5)	0	0.0028(4)	0
05	0.0134(5)	0.0105(5)	0.0066(4)	0	-0.0001(3)	0
O6	0.0224(4)	0.0097(4)	0.0082(3)	0.0019(3)	0.0007(3)	0.0011(3)
F1	0.0104(5)	0.0138(4)	0.0182(4)	0	-0.0025(3)	0
F2	0.0173(5)	0.0146(4)	0.0107(4)	0	0.0001(3)	0
Li ₉ Mg ₃ [PO ₄] ₄ F ₃						
Li1	0.013(3)	0.021(3)	0.021(3)	0.0043(17)	0.002(2)	0.007(2)
Li2	0.035(3)	0.021(2)	0.017(3)	0.008(3)	0.003(3)	-0.0047(19)
Li3	0.0028(17)	0.003(2)	0.0064(17)	-0.0010(13)	0.0020(18)	0.002(2)
Mg1	0.0090(3)	0.0082(4)	0.0102(4)	0.0044(3)	-0.0001(5)	0.0000(4)
P1	0.0085(3)	0.0067(3)	0.0086(3)	0.00422(19)	0.0001(3)	0.0003(4)
P2	0.0073(3)	0.0073(3)	0.0085(6)	0.00366(15)	0	0
01	0.0110(10)	0.0104(9)	0.0120(8)	0.0069(6)	0.0006(8)	0.0015(8)
O2	0.0093(8)	0.0130(9)	0.0165(9)	0.0055(9)	0.0009(7)	-0.0008(12)
O3	0.0161(10)	0.0106(9)	0.0116(9)	0.0082(8)	-0.0010(7)	-0.0014(7)
O4	0.0172(10)	0.0098(9)	0.0111(11)	0.0068(8)	-0.0035(8)	-0.0032(7)
05	0.0138(8)	0.0109(8)	0.0103(8)	0.0063(7)	0.0020(7)	0.0009(9)
O6	0.0141(9)	0.0141(9)	0.0117(14)	0.0070(5)	0	0
F1	0.0115(8)	0.0111(6)	0.0132(6)	0.0036(6)	0.0029(7)	0.0007(5)

Table S2. Comparison of the crystallographic data of $Li_9Mg_3[PO_4]_4F_3\Box_1$ and $Na_8Mn_4[PO_4]_4F_4$ after lowering the symmetries from $P6_3$ and $P2_1/c$ to $P2_1$, respectively. The main differences are highlighted in red.

Li ₉ Mg	g3[PO₄]₄F3□	1 [Space group	: P2 ₁ (No. 4)]	Na ₈ M	n ₄ [PO ₄] ₄ F ₄ [S]	bace group : P2	1 (No. 4)]
a = 12.6	159(6) Å, $b =$	5.0082(4) Å, c	r = 12.6159(6) Å,	a = 13	B.6830 Å, b = 5	5.3170 Å, c = 1	3.7683 Å
	$\beta = 120^{\circ}, V$	= 690.32(7) Å	$^{3}, Z = 2$	ļ <i>f</i>	B = 120.04 °, V	$= 867.13 \text{ Å}^3, 2$	z = 2
Atom	x	У	z	Atom	x	у	z
Lila	0.91596	0.34609	0.08346	Na1_2	0.92016	0.26170	0.08350
Lilb	0.83250	0.84609	0.91596	Na4_2	0.83455	0.73700	0.92191
Lilc	0.91654	0.34609	0.83250	Mn2_2	0.92356	0.22901	0.85041
Li2a	0.82524	0.79962	0.42936	Na4_1	0.83455	0.76300	0.42191
Li2b	0.60412	0.79962	0.17476	Na2_2	0.58023	0.75620	0.16325
Li2c	0.57064	0.79962	0.39588	Mn1_1	0.57610	0.77224	0.42666
Li3a	0.91379	0.27109	0.57909	Na1_1	0.92016	0.23830	0.58350
Li3b	0.66530	0.27109	0.08621	Na3_2	0.66608	0.25860	0.08680
Li3c	0.42091	0.27109	0.33470	Na2_1	0.41977	0.24380	0.33675
Mgla	0.93254	0.26874	0.35849	Mn2_1	0.92356	0.27099	0.35041
Mg1b	0.42594	0.26874	0.06745	Mn1_2	0.42390	0.22776	0.07334
Mg1c	0.64152	0.26874	0.57406	Na3_1	0.66608	0.24140	0.58680
P1b	0.84677	0.75424	0.16576	P2_2	0.83782	0.78350	0.17335
O2b	0.90816	0.75313	0.08608	05_2	0.90370	0.70190	0.11520
O5b	0.83408	0.45809	0.19409	04_1	0.85110	0.07170	0.19420
O4b	0.92631	0.90619	0.28440	01_1	0.88340	0.64650	0.28620
O3b	0.71920	0.88192	0.09711	06_2	0.71190	0.72140	0.09830
P2	0.33333	0.79544	0.66667	P1_1	0.33795	0.78560	0.66529
Olc	0.59815	0.18600	0.20247	02_2	0.59730	0.21450	0.21010
Olb	0.79753	0.18600	0.39568	08_1	0.78750	0.22010	0.38520
Ola	0.60432	0.18600	0.40185	03_1	0.61400	0.14660	0.39900
06	0.66667	0.60217	0.33333	07_1	0.65150	0.57390	0.34630
P1a	0.83424	0.75424	0.68101	P2_1	0.83782	0.71650	0.67335
O3a	0.90289	0.88192	0.62208	05_1	0.90370	0.79810	0.61520
O5a	0.80591	0.45809	0.63999	04_2	0.85110	0.42830	0.69420
O2a	0.91392	0.75313	0.82209	01_2	0.88340	0.85350	0.78620
O4a	0.71560	0.90619	0.64191	06_1	0.88340	0.85350	0.78620
P1c	0.68101	0.25424	0.84677	P1_2	0.66205	0.21440	0.83471
O3c	0.62208	0.38192	0.71920	02_1	0.59730	0.28550	0.71010
O4c	0.64191	0.40619	0.92631	03_2	0.61400	0.35340	0.89900
O2c	0.82209	0.25313	0.90816	08_2	0.78750	0.27990	0.88520
O5c	0.63999	-0.04191	0.83408	07_2	0.65150	-0.07390	0.84630
F1a	0.03892	0.07408	0.52264	F1_1	0.00030	0.00040	0.48680
F1b	0.51628	0.57408	0.03892	F2_2	0.49270	0.50160	0.00860
F1c	0.47736	0.07408	0.51628	F2_1	0.49270	-0.00160	0.50860
Vacant	-	-	-	F1_2	0.00030	0.49960	0.98680