Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is (c) The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

In-situ preparation of SnO₂@polyaniline nanocomposite and the synergetic structure for high-performance supercapacitors

Lu Wang,^{a,c} Lin Chen,^{a,c} Bo Yan,^{a,c} Chunguang Wang,^a Feng Zhu,^a Xuefan Jiang,^a Yimin

Chao^b and Gang Yang*a,b,c

^a Jiangsu Laboratory of Advanced Functional Material, Changshu Institute of Technology,

Changshu 215500, China.

^b Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich

NR4 7TJ, United Kingdom, United Kingdom.

^c School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

* Corresponding Authors. E-mail: gyang@cslg.edu.cn

Preparation	Nature of	Content of	Current	Electrolyte	The	Current density ^a	Maximum	Capacitance	Ref
method	composite	SnO_2 in	collector		Potential		specific	retention after	(year)
	1	composite			window		capacitance	cycle test	
Sol-gel method	Powder	-	Graphite	1M	-0.2-	$i_s = 5 \text{ mA cm}^2$	305 F g ⁻¹		[14]
			sheet	H_2SO_4	0.8V	2			(2009)
								95.5% after	
						I = 5 mA		500 cycles	
Wet chemical	Powder	29.1%	Pt foil	1M	0- 0.75V	$i_s = 1 \text{ mA cm}^{-2}$	219 F g ⁻¹	72.1% after	[16]
method				HClO ₄				100 cycles	(2012)
	D 1			11.6	0.0	· • • 1	540 E 1		[7]
Wet chemical	Powder	-	Carbon	IM	-0.2-	$1_m = 1 \text{ A g}^{-1}$	542 F g ⁻¹	-	[7]
method			paper	H_2SO_4	0.7V				(2012)
Liltrasonication	Powder	81.3%	Granhite	1M	0-	$i = 0.1 \Delta \sigma^{-1}$	225 F 1		This
Ollasomeation	Towaei	01.570	chaot		117	1 _m 0.1 / 1 g	335 F g-1		T III5
			sneet	П ₂ 504	1 V				WOLK
						$1_m = 15 \text{ A g}^{-1}$	125 F g ⁻¹	100% after	
								10000 cycles	
$a i = current density, i_s (mA cm^{-2}), i_m (A g^{-1}), I = Current value.$									

Table S1 Summary of electrochemical measurements reported in recent papers for $SnO_2@PANI$ nanocomposite supercapacitor electrodes.

The transformation from i_s (mA cm⁻²) to i_m (A g⁻¹): $i_s = 1000 \times m \times i_m/S$, m (mg) and S (cm²) are the weight and the area of the active electrode, respectively. In this work, m = 1.04 mg, S = 1×2 cm², and 0.1 A g⁻¹ = 52 mA cm⁻².

Fig. S1 Ragone plots of SP-1, SP-2, SP-3, SnO and PANI. The energy density and the power density are derived from the charge/discharge curves at various current densities from 0.1 A g^{-1} to 40 A g^{-1} .