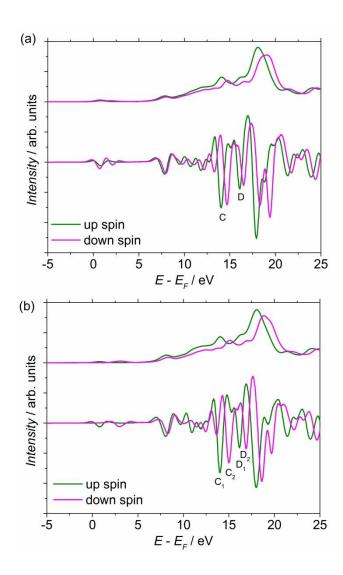
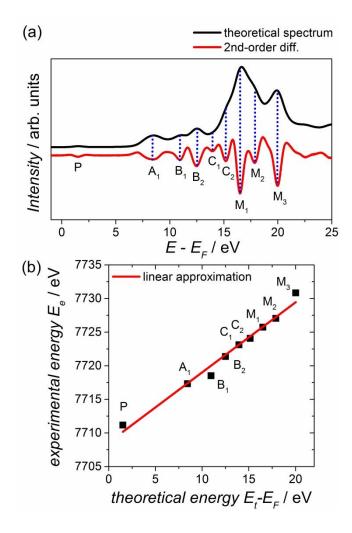

Electronic Supplementary Information

Further Findings of X-ray Absorption Near-Edge Structure in Lithium Manganese Spinel Oxide with First-Principles Calculations


Toyoki Okumura, * Yoichi Yamaguchi, Masahiro Shikano, and Hironori Kobayashi*

Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan


*E-mail: toyoki-okumura@aist.go.jp; hironori-kobayashi@aist.go.jp

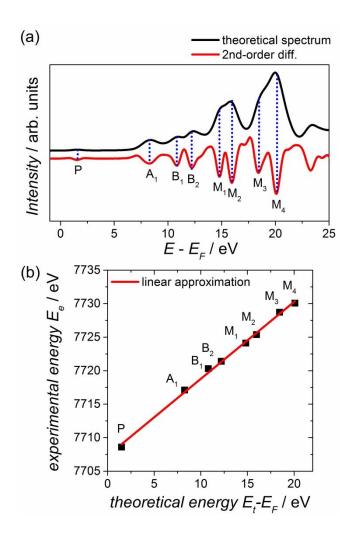

Fig. S1 Schematic diagram of the phase transitions during de-intercalation or intercalation from $\text{Li}_x \text{Mn}_2 \text{O}_4$ (x=1). Purple octahedrons represent MnO₆, red balls indicate oxide ions, and yellow balls represent lithium ions.

Fig. S2 Theoretical Mn K-edge XANES spectra corresponding to up spins (green curves) and down spins (pink curves) of LiMn₂O₄ calculated by (a) GGA and (b) GGA+U. Second-order differential curves of the XANES spectra are also shown on the bottom to clearly visualize each peak.

Fig. S3 (a) Theoretical Co *K*-edge XANES spectra of O3-LiCoO₂ calculated by GGA (black curves). Second-order differential curves of the XANES spectra are also shown to clearly visualize each peak (red curves). (b) The comparative plots of the theoretical peak energies with experimental energies ($E_t - E_F = \alpha E_e + \beta$, $\alpha = 1.04$, $\beta = 7708.60$, $R^2 = 0.977$).

Fig. S4 (a) Theoretical Co *K*-edge XANES spectra of O2-LiCoO₂ calculated by GGA (black curves). Second-order differential curves of the XANES spectra are also shown to clearly visualize each peak (red curves). (b) The comparative plots of the theoretical peak energies with experimental energies ($E_t - E_F = \alpha E_e + \beta$, $\alpha = 1.15$, $\beta = 7707.32$, $R^2 = 0.997$).

Table S1 Crystallographic parameters of models and XANES simulating conditions for DFT calculation

Model	Unit-cell formula	Space Group	Lattice parameter / Å ^{a)}				Super	k-point grid ^{b)}	
			а	ь	с		cell	SCF (GS)	SCF & XANES (ES)
LiMn ₂ O ₄	$Li_8Mn_{16}O_{32}$	Fd-3m	8.248	=a	= a		1 x 1 x 1	12 x 12 x 12	4 x 4 x 4
LiMn³+Mn⁴+O₄ AFM-1° ⁾	$Li_4(Mn_4{}^{3+}Mn_4{}^{4+})O_{16}$	C2/c	8.137	8.386	5.839	$\beta = 47.63$	1 x 2 x 1	12 x 12 x 12	4 x 4 x 4
LiMn ³⁺ Mn ⁴⁺ O ₄ AFM-2 ^{c)}	$Li_4(Mn_4^{3+}Mn_4^{4+})O_{16}$	Imma	5.750	= <i>b</i>	8.707		2 x 2 x 1	12 x 12 x 12	4 x 4 x 4
$Li_{0.5}Mn_2O_4$	$Li_4Mn_{16}O_{32}$	F-4₃m	8.144	=a	= a		1 x 1 x 1	12 x 12 x 12	4 x 4 x 4
\boxtimes -Mn ₂ O ₄	$Mn_{16}O_{32}$	Fd-3m	8.033	=a	= a		1 x 1 x 1	12 x 12 x 12	4 x 4 x 4
$Li_2Mn_2O_4$	$Li_8Mn_8O_{16}$	I4₁/amd	5.649	=a	9.198		2 x 1 x 1	12 x 12 x 12	4 x 4 x 4

a) Lattice parameters were input with Ref [1]-[4]. ([1] *Chem. Mater.* **2000**, 12, 3246., [2] *J. Cryst. Growth* **2001**, 229, 405., [3] *J. Electrochem. Soc.* **2004**, 151, A296., [4] *Chem. Mater.* **1999**, 11, 1936.)

Table S2 Ratios of crystal phases in lithium-ion intercalated/de-intercalated Li_xMn₂O₄ samples estimated by Rietveld analysis of synchrotron X-ray diffraction

Model	Phase	Space Group	R_{wp}	S	Molar Ratio/%
LiMn ₂ O ₄	1	Fd-3m	5.888	1.5285	100
$Li_{0.75}Mn_2O_4$	1	Fd-3m	6.038	1.6654	100
$Li_{0.5}Mn_2O_4$	1	Fd-3m	6.301	1.7461	100
Li _{0.25} Mn ₂ O ₄	1	Fd-3m	4.062	0.9689	43.3
LI0.251VII I2O4	2	Fd-3m	4.002	0.9069	56.7
$Li_{0.08}Mn_2O_4$	1	Fd-3m	5.651	1.5534	100
Li _{1.25} Mn ₂ O ₄	1	Fd-3m	5.780	1.6483	68.6
LI1.25/VIT12O4	2	I4₁/amd			31.4
I: Mm O	1	Fd-3m	6.312	1.7795	37.8
$Li_{1.5}Mn_2O_4$	2	I4₁/amd			62.2
I: Mac O	1	Fd-3m	6.261	1.7916	22.6
Li _{1.66} Mn ₂ O ₄	2	$I4_1/amd$			77.4

b) GS and ES denote the ground and exctited states, respectively.

c) Two anti-ferromagnetic (AFM) structures were modeled and full-optimized under each space group using Wien2k DFT-code.