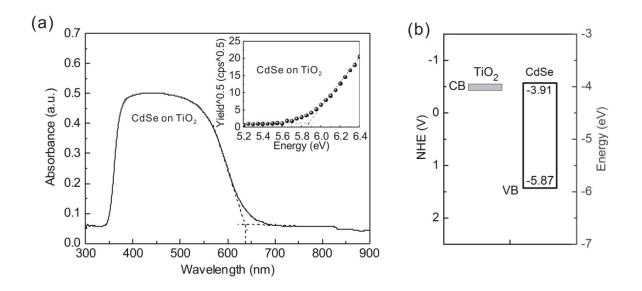

Supporting Information

Band Alignment by Ternary Crystalline Potential-Tuning Interlayer for Efficient Electron Injection in Quantum Dot-Sensitized Solar Cells


5 Zhenhua Chen^a, Wenqin Peng^a, Kun Zhang^a, Jing Zhang^a, Xudong Yang^{a,*} Youhei Numata^a, and Liyuan Han^{a,b*}

^aPhotovoltaic Materials Unit, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan ^bState Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, China

10

Fig. S1 EDX spectrum of ternary $CdS_{0.74}Se_{0.26}$ QDs (Figure S1a), $CdS_{0.57}Se_{0.43}$ QDs (Figure S1b), and 15 $CdS_{0.42}Se_{0.58}$ QDs (Figure S1c), with specific elemental peaks. These peaks are as follows: Titanium K_{α} =4.51 keV and K_{β} =4.93 keV, Oxygen K_{α} =0.52 keV, Cadmium L_{α} =3.13 keV and L_{β} =3.31 keV, Surful K_{α} =2.37 keV and Selenium L_{α} =1.37 keV. The detailed composition of elements in $CdS_{1-x}Se_x$ QDs have been listed in Figure S1d.

Fig. S2 (a) Absorbance spectrum of CdSe QDs decorated TiO₂ nanoparticles by SILAR process (7 cycles). The inset is its corresponding ionization spectra. (b) Band diagram at the TiO₂/CdSe interface. 5

Fig. S3a shows scanning electron micrographs of bare TiO₂ nanoparticles (upper part) and TiO₂ nanoparticles decorated with $CdS_{0.57}Se_{0.43}/CdSe$ QDs (lower part). The transparent TiO₂ nanoparticles we prepared had an average diameter of 25 nm with a pore size of 25.0 ± 4 nm, as determined by the Brunauer–Emmett–Teller method. After coverage with the $CdS_{0.57}Se_{0.43}/CdSe$ QDs, the surface of the 10 TiO₂ nanoparticles was rough and the pore size became smaller. The double-layer $CdS_{0.57}Se_{0.43}/CdSe$ QDs were effectively loaded onto the TiO₂ film, as demonstrated in the cross-sectional scanning electron micrograph shown in Fig. S3b. Cross-sectional mapping of Cd, S, and Se indicates that these elements were uniformly distributed throughout the photoanode.

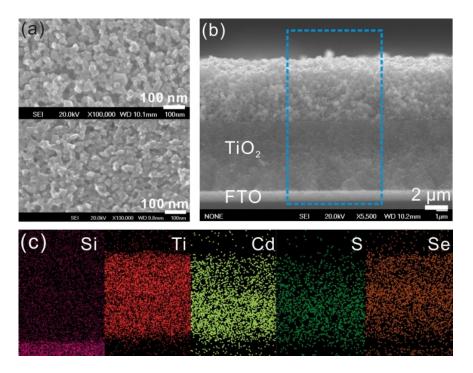


Fig. S3 (a) Scanning electron micrographs of bare TiO₂ nanoparticles (upper image) and CdS_{0.57}Se_{0.43}/CdSe QD-decorated TiO₂ nanoparticles (lower image). (b) Cross-section scanning electron micrograph of the mesoporous TiO₂ substrate consisting of a 5-μm-thick, dense, transparent 5 layer of TiO₂ nanoparticles (diameter ~25 nm) and a 5-μm-thick scattering layer (diameter ~400 nm). (c) Elemental mapping of Si, Ti, Cd, S, and Se in a QD-sensitized TiO₂ film.

We determined the LHEs of the CdS/CdSe QDs and three types of CdS_{1-x}Se_x QDs/CdSe QDs (x = 0.26, 0.43, and 0.58) on a thin cover glass (0.14 mm) to avoid scattered light leaks from the glass 10 substrate side. The transmittance and reflectance spectra of bare TiO₂ film are shown in Fig. S4a. The light collection obtained by adding the transmittance and reflectance spectra approached 100% above 400 nm. Fig. S4b shows the LHE of QD-sensitized films; light harvesting below 400 nm was assigned to absorption by the TiO₂ film. The band edge of the LHE spectra in Fig. 4b was kept at 710 nm for the different double-layer QDs. The LHEs of the QDs approached 90% at 550 nm owing to the high

extinction coefficient of semiconductor QDs, the concentration of QDs, and the thickness of the absorbing layer we used.

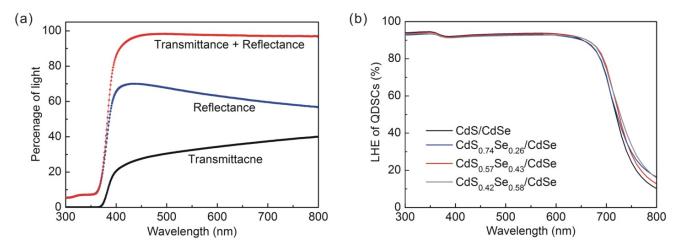


Fig. S4 (a) Reflectance, transmittance spectrum and the sum of them for bare TiO_2 film. The 5 construction of this measurement is composed by thin cover glass, deposited bare TiO_2 film and the other thin cover glass with aqueous solution, to model electrolyte in real solar cells. ²⁸ (b) LHE of QDSCs vs. wavelength calculated for both CdS/CdSe and CdS_{1-x}Se_x/CdSe QDSCs (x=0.26, 0.43, 0.58).

10 The τ_{sc} values can be calculated as $\tau_{sc} = 1/\omega_{\min,sc} = 1/2\pi f_{\min,sc}$, where $f_{\min,sc}$ is the frequency of the lowest imaginary number in the IMPS plot. The τ_{oc} values can be calculated as $\tau_{oc} = 1/\omega_{\min,oc} = 1/2\pi f_{\min,oc}$, where $f_{\min,oc}$ is the frequency of the lowest imaginary number in the IMVS plot.

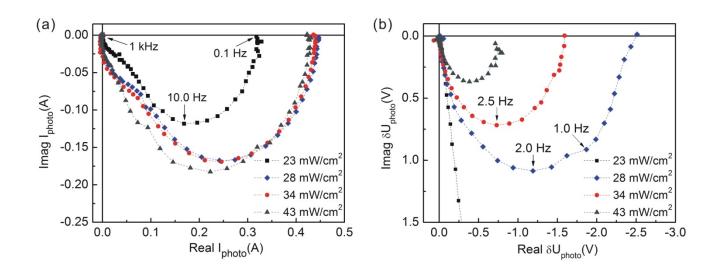


Fig. S5 (a) IMPS and (b) IMVS spectra of CdS_{0.57}Se_{0.43}/CdSe QDSCs measured under varying level of laser intensities (λ=446 nm). The τ_{sc} can be obtained from the frequency of the lowest imaginary in 5 the IMPS plot while τ_{oc} can be calculated from the frequency of the lowest imaginary in the IMVS plot.

	Intensity (W/m ²)	$ au_{ m oc}$ (ms)	$ au_{ m sc}$ (ms)	$\eta_{ m coll}$ (%)
CdS/CdSe	24.1	503.3	31.8	93.7
	30.3	63.4	5.0	92.1
	37.5	50.3	2.5	95.0
	46.6	25.2	1.6	93.7
CdS _{0.74} Se _{0.26} /CdSe	24.1	797.6	25.2	96.8
	30.3	110.4	4.0	96.0
	37.5	50.3	2.5	95.0
	46.6	31.8	1.6	95.0
CdS _{0.57} Se _{0.43} /CdSe	24.1	633.6	15.9	97.5
	30.3	79.8	3.2	96.0
	37.5	63.4	2.0	96.8
	46.6	50.3	1.3	97.5
CdS _{0.42} Se _{0.58} /CdSe	24.1	633.6	20.0	96.8
	30.3	100.4	4.0	96.0
	37.5	63.4	2.5	96.0
	46.6	40.0	2.0	95.0

Table S1 Values of τ_{oc} , τ_{sc} , and η_{coll} for QDSCs under varying light intensities ($\lambda = 446$ nm) calculated from IMVS and IMPS measurements.

Table S2 Calculated J_{sc} , V_{oc} , FF, η , series (R_{s}) and shunt (R_{sH}) resistance values for Zn-doped CdS/CdSe, Se-doped CdS/CdSe and ternary CdS_{0.57}Se_{0.43}/CdSe QDSCs under 1-sun illumination (100 mW/cm²).

	$J_{\rm sc}$ (mA/cm ²)	V _{oc} (mV)	FF (%)	η (%)	R _s (ohm)	R _{SH} (ohm)
Zn-doped CdS/CdSe	11.98	517.7	51.5	3.19	61.9	1810.4
Se-doped CdS/CdSe	12.08	548.5	54.2	3.42	41.5	3150.0
CdS _{0.57} Se _{0.43} /CdSe	14.22	566.8	55.3	4.46	35.2	5554.6

5