Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A strong linear correlation between the surface charge density on Ag nanoparticles and the amount of propylene adsorbed

Jung Hyun Lee, Sang Wook Kang, Min Sun Yeom[†], Young Rae Kim,

Hyungwoo Choi, Donghoon Song, Jongok Won, and Yong Soo Kang^t

Department of Energy Engineering, Hanyang University, Seoul 133-791, South Korea

kangys@hanyang.ac.kr

#	Applied TCNQ in solution [mol% to 100 mg Ag NPs]	Applied TCNQ in solution [µM]	Adsorbed TCNQ [µmol/ 100 mg Ag]	Surface coverage by TCNQ [%]	Adsorbed TCNQ [molecules/ nm ²]	Binding Energy of Ag (eV)	Propylene adsorption (µg/100 mg NP)
1	0	0	0.000	0	0.00	368.25	76.58
2	0.01	9	0.080	2.26	0.06	369.73	167.74
3	0.025	23	0.124	4.08	0.09	368.89	201.26
4	0.05	47	0.354	11.66	0.26	369.20	244.06
5	0.075	70	0.618	20.33	0.46	369.19	268.77
6	0.1	93	0.739	24.30	0.55	369.09	247.76
7	0.125	116	0.900	29.62	0.67	368.93	201.47
8	0.15	140	1.036	34.08	0.77	368.78	190.90
9	0.175	164	0.884	29.07	0.66	368.70	178.33
10	0.2	186	0.986	32.44	0.74	368.37	196.19

Table S1. Properties of Ag NPs depending on the TCNQ concentration

Surface coverag	TCNQ a	dsorption	TCNQ + propylene adsorption		
e by TCNQ (%)	Configuration	Adsorption ener gy (eV)	Configuration	Adsorption energy (eV)	
0	(V-V-V-V)	-	(P-V-P-V)	-0.078	
25	(T-V-V-V)	0.427	(T-P-V-V)	-0.444	
23		-0.427	(T-V-P-V)	-0.423	
	(T-T-V-V)	-0.643	(T-T-P-V)	-0.587	
50	(T-V-T-V)	-0.786	(T-P-T-V)	-0.750	
50			(T-P-T-P)	-0.885	
			(P-V-P-V)	-0.026	
75	(T-T-T-V)	-0.856	(T-T-T-P)	-0.885	
100	(T-T-T-T)	-0.925	(P-P-P-P)	5.973	
100 + 50	(T-T-T-T) + (T-V-T-V)	-0.036			
100 + 100	(T-T-T-T) + (T-T-T-T)	0.606			

 Table S2. Calculated adsorption energies (eV) of TCNQ and propylene adsorbed on the Ag(1

 11) surface

V: Vacant, T: TCNQ and P: Propylene

+ represents the second layer

Figure S1. Schematic illustration of the sorption measurement equipment

The micro-change of Ag NPs weight upon propylene adsorption was measured by gravimetrical method, the extent of the stretched length of the quartz spring. First, the homemade instrument as depicted above (Figure S1) was set up and the constant temperature was maintained. The customized quartz spring was utilized to measure the weight change of the sample and the sample pan was made by Al foil to minimize the amount of gas absorption of the pan. The used quartz spring balance had a sensitivity of 100 μ g/100 μ m and was calibrated with a standard mass before use. The maximum weight and extension of the spring were 300.0 mg and 300.0 mm, respectively. Before the sorption measurement, (TCNQtreated) Ag NPs sample was dried at vacuum condition. Then, the propylene or propane gas was applied to reach constant pressure. The propylene adsorption on the Ag NPs powder was calculated by measuring the position or length of the sample pan until the steady-state.

Figure S2. Isotherm adsorption of the NPs analysis by BET measurement

Figure S3. UV-Vis spectra of TCNQ solutions in ethanol upon changing the TCNQ concentr ation: (a) before and (b) after Ag NP immersion

Figure S4. XPS spectra of Ag NPs adsorbed by various amounts of TCNQ molecules