Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance

Youngmin Kim^{ab}, Yuseong Noh^{ab}, Eun Ja Lim^{ab}, Seonhwa Lee^{bc}, Sung Mook Choi^d and Won Bae Kim^{*abc}

^aSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea ^bResearch Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea ^cDepartment of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea ^dSurface Technology Division, Korea Institute of Materials Science (KIMS), Changwon 641-010, Republic of Korea

Table S1. EXAFS fitting results of Pt L₃ edge and Pd K edge for the first shell of Pt/RGO, PdPt/RGO, and Pd@Pt/RGO.

Catalyst	Edge	Shell	N ^a	$R(Å)^{b}$	$\Delta E_0 (eV)^c$	$\sigma^{2}(\text{\AA}^{2})^{d}$	R-factor
Pt foil	Pt L ₃	Pt-Pt	12	2.767±0.002	8.1±0.4	0.0048 ± 0.0001	0.0006
Pd foil	Pd K	Pd-Pd	12	2.742±0.002	-2.0±0.6	0.0056±0.0003	0.0018
Pt/RGO	Pt L ₃	Pt-Pt	8.2±0.7	2.759±0.004	8.2±1.0	0.0065 ± 0.0004	0.0045
PdPt/RGO	Pt L ₃	Pt-Pt	5.4±0.6	2.735±0.005	7.2±0.6	0.0067 ± 0.0007	0.0073
		Pt-Pd	3.9±0.5	2.737 ± 0.005		0.0062 ± 0.0007	
	Pd K	Pd-Pd	5.5±1.3	2.748 ± 0.007	-2.5±1.7	0.0082 ± 0.0013	0.0073
		Pd-Pt	2.0 ± 0.2	2.737 ± 0.005		0.0062 ± 0.0007	
Pd@Pt/RGO	Pt L ₃	Pt-Pt	6.6±0.8	2.743 ± 0.008	6.6±1.2	0.0062 ± 0.0007	0.0034
		Pt-Pd	1.0±0.5	2.731±0.016		0.0039 ± 0.0027	
	Pd K	Pd-Pd	9.0±0.8	2.768 ± 0.003	-2.2±0.8	0.0072 ± 0.0004	0.0034
		Pd-Pt	0.5±0.3	2.731±0.016		0.0039 ± 0.0027	

^a The average coordination number for the coordination shell.

^b Interatomic distance.

^c E₀ shift of the path.

^d Debye-Waller factor.

Fig. S1. SEM images of (A) GO, (B) Pd@Pt/RGO, (C) PdPt/RGO, and (D) Pt/RGO.

Fig. S2. (A-B) TEM images of Pd/RGO at different magnifications, (C) an HR-TEM image of Pd/RGO, and (D) the EDX spectrum of Pd/RGO. The inset in (B) shows an individual Pd particle on RGO.

Fig. S3. (A-B) TEM images of Pt/RGO at different magnifications, (C) an HR-TEM image of Pt/RGO, and (D) the EDX spectrum of Pt/RGO.

Fig. S4. TGA profiles of Pt/RGO, PdPt/RGO, and Pd@Pt/RGO catalysts from 300 K to 900 K at a temperature ramping rate of 10 K min⁻¹.

Fig. S5. Curve-fitted XPS spectra of (A-C) Pt 4f and (D, E) Pd 3d for Pt/RGO, PdPt/RGO, and Pd@Pt/RGO.

Fig. S6. Deconvoluted C1s XPS spectra for (A) GO and (B) Pd@Pt/RGO.

Fig. S7. XPS survey spectra of GO and Pd@Pt/RGO.

Fig. S8. K³-weighted EXAFS spectra of (A) Pt L₃-edge and (B) Pd K-edge for Pt/RGO, Pd/RGO, Pd/RGO, and Pd@Pt/RGO with their corresponding metal foils.

Fig. S9. CVs of the (A) monometallic Pt/C and Pt/RGO and (B) bimetallic PdPt/RGO and Pd@Pt/RGO in N₂-saturated 0.5 M NaOH solution; the scan rate was 50 mV s⁻¹.

Fig. S10. CV of Pd/RGO in N₂-saturated 0.5 M NaOH + 0.5 M methanol obtained at a scan rate of 50 mV s⁻¹. Inset shows the CV of Pd/RGO in N₂-saturated 0.5 M NaOH.

Fig. S11. ECSA-normalized CV curves of Pt/C, Pt/RGO, PdPt/RGO, and Pd@Pt/RGO in N₂-saturated 0.5 M NaOH + 0.5 M methanol obtained at a scan rate of 50 mV s⁻¹.

Fig. S12. CVs of (A) Pt/C, (B) Pt/RGO, (C) PdPt/RGO, and (D) Pd@Pt/RGO before and after CA tests in 0.5 M NaOH + 0.5 M methanol.

Fig. S13. (A) Normalized cycling stabilities of Pt/C, Pt/RGO, PdPt/RGO, and Pd@Pt/RGO in 0.5 M NaOH + 0.5 M methanol at a scan rate of 50 mV s⁻¹. (B) TEM image of the Pd@Pt/RGO after cycling stability test.