Supporting Information

Low ion-transfer resistance and high volumetric supercapacitor using hydrophilically surface modified carbon electrodes

Heejoun Yoo, Misook Min, Sora Bak, Yeoheung Yoon and Hyoyoung Lee*

Ref.	Charateristics	Electrolyte, system	Gravitic Capacitance	Volumetric Capacitance	
1	rGO/SWCNT	BMIM BF ₄ , 2 electrode	222 F g ⁻¹ at 1 A g ⁻¹	-	
2	rGO/MWCNT, self-assembled	1M H ₂ SO ₄ , 3 electrode	279 F g ⁻¹ at 1 A g ⁻¹	-	
3	GO/MWCNT	1M H ₂ SO ₄ , 3 electrode	180 F g ⁻¹ at 0.4 A g ⁻¹	-	
4	rGO/MWCNT, amin functionalized	$\begin{array}{c} 0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4, \\ 3 \mathrm{\ electrode} \end{array}$	175 F g ⁻¹	-	
5	rGO/MWCNT film	6M KOH, 3 electrode	265 F g ⁻¹ at 0,1 A g ⁻¹	-	
6	rGO/MWCNT, Poly(ethylenimine) assited	1M H ₂ SO ₄ , 3 electrode	120 F g ⁻¹ at 1 V s ⁻¹	-	
7	rGO/SWCNT	1M KCl, 2 electrode	201 F g ⁻¹ at 0.5 A g ⁻¹	-	
8	rGO/MWCNT	3M KCl, 2 electrode		6.1 mF cm ⁻²	

 Table S1. Comparison of capacitance of the rGO/CNTs electrode in literature data.

Ref	Characteristics	Electrolyte, System	Capacitance / F g ⁻¹	Volumetric Capacitance	Mass loading	Electrode thickness
9	SWCNT, printable film	PVA-H ₃ PO ₄	110 F g ⁻¹	3.62 cm ⁻²	33.3 µg cm-2	$\sim 0.6~\mu$ m
10	rGO, Laser scribing	PVA-H ₃ PO ₄	203.8 F g ⁻¹	7.34 cm ⁻²	36.3 µg cm-2	$\sim 7.6~\mu$ m
11	rGO, cellulose composite paper	PVA-H ₃ PO ₄	68.1 F g ⁻¹	46 cm ⁻²	680 µg cm ⁻²	-
12	rGO, Hydrogel solide-state	PVA-H ₂ SO ₄	93 F g ⁻¹	372 F cm ⁻² , 6.25 F cm ⁻³	$2000~\mu{ m g~cm^{-2}}$	$\sim 185~\mu{\rm m}$
13	rGO pattern	PVA-H ₃ PO ₄	285 F g ⁻¹	0.462 F cm ⁻² , 359 F cm ⁻³	$0.315~\mu{ m g~cm^{-2}}$	0.025 µm
This work	RGO-SCNT25	PVA-H ₃ PO ₄	53.2 F g ⁻¹	85 F cm ⁻² , 50 F cm ⁻³	1600 µg cm-2	17 µm
	RGO-SCNT50	PVA-H ₃ PO ₄	45.2 F g ⁻¹	81 F cm ⁻² , 40 F cm ⁻³	1800 µg cm-2	20 µm

 Table S2. Comparison of capacitance of solid-state supercapacitors demonstrated in this study with literature data.

Fig. S1. The 1H spectra of (a) *p*-sulfonic acid and (b) 4-Benzenediazoniumsulfonate.

Fig. S2. The schematic images of RGO-CNT and RGO-SCNT electrodes.

Fig. S3. (a) Optical image of CNTs and SCNTs dispersion solution in H_2O . (b) FT-IR spectra of CNTs and SCNTs. (c) XPS spectra of CNTs and SCNTs.

Fig. S4. Voltage drops of galvanostatic charge-discharge for RGO-CNT50 and RGO-SCNT50.

Figure S5. The comparison water contact images (down and upside) of RGO, RGO-SCNT25, RGO-SCNT50, and RGO-SCNT75.

Fig. S6 The SEM images and water contact angle (inset) of (a) film-RGO-SCNT50, (b) spray-RGO-SCNT50, (c) CV curves at scan rate of 20 mV sec⁻¹, (d) Volumetric capacitance with different scan rate from 2 to 100 mV sec⁻¹.

Fig. S7 Cycling stability of the RGO-SCNT50 at 100mV sec⁻¹

Fig. S8 Nyquist impedance plots and fitting data for R_s and R_{IT}.

	Electrode specification			Specific capacitance ^{a)}		Water contact angles		Resistance $(\Omega)^{b)}$			
	CNT r atio (w t%)	Weight (mg)	Thicknes s (µm)	Bulk de nsity (g cm ⁻³)	Volumetric (F cm ⁻³)	Areal (mF cm ⁻²)	Gravimetric (F g ⁻¹)	Down side	Top side	R _S	R _{IT}
RGO	-	2	18	1.11	6.3	10.6	5.3	78.8	79.1	60	~380
RGO-C NT50	50	2.1	40	0.53	18.5	74	35.2	82.4	89.8	15.5	53
RGO-S CNT25	25	1.6	17	0.94	50.1	85.2	53.2	62.7	78.1	20.8	~ 60
RGO-S CNT50	50	1.8	20	0.9	40.7	81.4	45.2	56.3	66.7	20.2	19.2
RGO-S CNT75	75	1.8	28	0.64	16.8	47.1	26.2	42.7	59	24.6	12.3
Spray-R GO-SC NT50	50	0.7	10	0.7	46.2	46.2	66.1	-	-	-	-

 Table S3. The specification and capacitance data of solid-state supercapacitors demonstrated in this study.

a) Calculated from the CV curves at 5 mV sec⁻¹; b) Obtained from the Nyquist impedance plots

Reference

- 1 N. Jha, P. Ramesh, E. Bekyarova, M. E. Itkis, R. C. Haddon, Adv. Energy Mater., 2012, 2, 438.
- Z-D. Huang, B. Zhang, S-W. Oh, Q-B. Zheng, X-Y. Lin, N. Yousefi, J-K. Kim, J. Mater. Chem., 2012, 22, 3591.
- 3 S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu, S. X. Dou, Energy Environ. Sci., 2011, 4, 1855.
- 4 H. R. Byon, S. W. Lee, S. Chen, P. T. Hammond, Y. Shao-Horn, Carbon, 2011, 49, 457.
- 5 X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, X. Zhang, Electrochimica Acta, 2011, 56, 5115.
- 6 D. Yu, L. Dai, J. Phys. Chem. Lett., 2010, 1, 467.
- 7 Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L-C. Qin, Phys. Chem. Chem. Phys., 2011, 13, 17615.
- 8 M. Beidaghi, C. Wang, Adv. Funct. Mater., 2012, 22, 4501.
- 9 M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Letters, 2009, 9, 1872.
- 10 M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science, 2012, 335, 1326.
- 11 Z. Weng, Y. Su, D-W. Wang, F. Li, J. Du, H-M. Cheng, Adv. Energy Mater., 2011, 1, 917.
- 12 Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano, 2013, 7, 4021.
- 13 Z. Niu, L. Zhang, L, Liu, B. Zhu, H. Dong, X. Chen, Adv. Mater. 2013, 25, 4035.