Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Maize-like FePO₄@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique

Shuojiong Xu,^a Shiming Zhang,^{ab} Junxi Zhang,^{*a} Tian Tan,^a Yao Liu^a

^aElectrochemical Research Group, Shanghai University of Electric Power, Shanghai,

200090, People's Republic of China.

^bState Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials

and Applications for Batteries of Zhejiang Province & Department of Materials

Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic

of China.

* Corresponding author. Tel. /Fax. : +86-21-65700719.

E-mail address: zhangjunxi@shiep.edu.cn.

Fig. S1 TGA curves of FePO₄ and the FePO₄@MCNT. The samples were tested by TA Q500 Thermogravimetric Analysis. The remaining weight of FePO₄ is 72%, the first weight loss observed below 100°C is about 5~10%, which could be ascribed to the release of adsorbed water on the surface of the sample. The next weight loss from 100°C to 450°C is approximate 20%, which corresponds to the elimination of crystal water. The remaining weight of FePO₄@MCNT is 80%, which is consistent with the presence of 70% FePO₄ in FePO₄@MCNT.

Fig. S2 TEM image of FePO₄ @ MCNT were acquired on a Philips CM200 FEG transmission electron microscope operated at 200 KV, showing the MCNT was covered with amorphous spherical FePO₄ nanoparticles.

The BET surface areas of samples were measured using Quantachorome Nova Station A by nitrogen sorption at 77K. The surface areas of FePO₄ and FePO₄@MCNT are 117.691 m²/g and 114.927 m²/g, respectively. The lower value of FePO₄@MCNT should be ascribed to one side of amorphous FePO₄ nanopartice loaded on the MCNT.

Fig. S3 The charge and discharge Curves of the initial two cycles of FePO₄@MCNT at 0.1 C. The composite delivered discharge and charge capacities of 155.2 mAh g⁻¹ and 128.7 mAh g⁻¹ in the first cycle; 120.4 mAh g⁻¹ and 141.5 mAh g⁻¹ in the second cycle.

(a)

(b)

(c)

Fig. S4 (a) XRD patterns of FePO₄ and the FePO₄@MCNT composite at different calcination temperatures (460°C, 650°C). (b) The charge-discharge Curves of FePO₄ at different calcination temperatures. (c) The charge-discharge Curves of the FePO₄@MCNT composite at different calcination temperatures. As shown in Fig. S4 (a), amorphous FePO₄ completely changes to crystalline trigonal FePO₄ at 650°C in air. From Fig. S4 (b), the amorphous FePO₄ delivered discharge and charge capacities of 133.6 mAh g⁻¹ and 102.3 mAh g⁻¹ in the first cycle, but the trigonal FePO₄ just delivered discharge and charge capacities of

69.2 mAh g⁻¹ and 50.7 mAh g⁻¹, which is consistent with the poor electrochemical behavior in Li-ion batteries.²⁸

It can be seen from Fig. S4 (a) that the FePO₄@MCNT composite also shows the 26.8° diffraction peak of the MCNTs at 650°C in N₂. But the other peaks should be ascribed to the carbon thermal reduction of Fe³⁺ to Fe²⁺, owing to the MCNTs and organic residues calcined at high temperature in N₂. As shown in Fig. S4 (c),

the FePO₄@MCNT (650°C) composite only delivered discharge and charge capacities of 71.7 mAh g⁻¹ and 76.7 mAh g⁻¹ in the first cycle. It is demonstrated that FePO₄@MCNT (460°C) composite has better electrochemical performance

than FePO₄@MCNT (650°C).