## Supporting Information

## Enhancement of Mineralization Ability of C<sub>3</sub>N<sub>4</sub> via lower Valence Position by Tetracyanoquinodimethane Organic Semiconductor

Mo Zhang, Wenqing Yao, Yanhui Lv, Xiaojuan Bai, Yanfang Liu, Wenjun Jiang and Yongfa Zhu\*



Figure S1 TEM images of pure  $g-C_3N_4$  (a) TCNQ- $C_3N_4$  with TCNQ mass fraction as 1 %, 5 %, 10 %, 20% (b-e) and pure TCNQ (f)



Figure S2 (a) Photocatalytic degradation of phenol and (b) the apparent rate constants over pure g-C<sub>3</sub>N<sub>4</sub> (0%), pure TCNQ (100%) and TCNQ-C<sub>3</sub>N<sub>4</sub> with different TCNQ mass fraction (1 % ~ 50 %) under simulated sunlight irradiation.



Figure S3 Photocatalytic degradation of 2,4-dichlorophenol (a) and bisphenol A (b), (inset) the apparent rate constants over pure  $g-C_3N_4$  (0%) and 10%-TCNQ-C<sub>3</sub>N<sub>4</sub> under visible light irradiation ( $\lambda$ >420 nm).



Figure S4 HPLC chromatograms of phenol and after photocatalytic degradation by TCNQ-C<sub>3</sub>N<sub>4</sub> (a) and pure C<sub>3</sub>N<sub>4</sub> for 4 h monitored at 275 nm ([phenol] = 5 ppm, catalyst = 25 mg/50 mL)



Figure S5 IR spectra of g-C<sub>3</sub>N<sub>4</sub>, pure TCNQ and TCNQ-C<sub>3</sub>N<sub>4</sub> materials.



Figure S6 Mott-Schottky (MS) plots of pure  $C_3N_4$  film electrodes at a frequency of 10 Hz and 100 Hz in an aqueous solution of  $Na_2SO_4$  (0.1 M).



Figure S7 Mott-Schottky (MS) plots of pure TCNQ film electrodes at a frequency of 10 Hz and 100 Hz in an aqueous solution of  $Na_2SO_4$  (0.1 M).



Figure S8 The valence band spectra of X-ray photoelectron spectroscopy for pure  $C_3N_4$ , 10%-TCNQ- $C_3N_4$  and pure TCNQ.



Figure S9 ESR spectra of 10%-TCNQ-C<sub>3</sub>N<sub>4</sub> in dark (a) 10%-TCNQ-C<sub>3</sub>N<sub>4</sub> under visible light irradiation ( $\lambda > 420$  nm) in water (b) pure C<sub>3</sub>N<sub>4</sub> in dark (c) and pure C<sub>3</sub>N<sub>4</sub> under visible light irradiation ( $\lambda > 420$  nm) in water (d).  $\bigstar$  label as superoxide radicals  $\blacklozenge$  label as hydroxy radical.



Figure S10 The plots of photogenerated carriers trapping in the system of photodegradation of phenol by 10%-TCNQ-C<sub>3</sub>N<sub>4</sub> and pure C<sub>3</sub>N<sub>4</sub> under visible light irradiation ( $\lambda > 420$  nm)



Figure S11 BET specific surface areas of pure  $g-C_3N_4$ , pure TCNQ and TCNQ- $C_3N_4$  with different TCNQ mass fraction.