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Fig. S1. SEM images of the PDA modified sponge.

The PDA-modified sponges showed a rough appearance containing nanoparticles. The nanoparticles results 

from the self-assembly of dopamine in the polymerization process.[1]

  

Fig. S2. SEM images of superhydrophobic sponges with (a) one, (b) three, and (c) five PDA/Ag bilayers.
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Fig. S3. Variation of water contact angle (a) and hysteretic angle of (b) the as-prepared sponges with the number 

of PDA/Ag bilayers.
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Fig. S4. (a) Stress-strain curves of a pristine sponge in the process of 4000-cycle compression. (b) Variation of the 

maximum stress, Young’s modulus and energy loss coefficient with compression cycles. Inset is the optical image 

of the pristine sponge after 4000-cycle compression.
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Fig. S5. SEM images of the superhydrophobic coating with seven PDA/Ag bilayers after compression for 6000 

cycles. Insets are the water contact angle and low magnified SEM image of the corresponding sponge.
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Fig. S6. SEM images of the superhydrophobic sponge prepared by electroless deposition before (a, b) and after (c, 

d) 4000-cycle compression. Variation of the contact angle (e) and hysteretic angle (f) of the sponge with 

compression cycle.
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Fig. S7. XPS spectra of the superhydrophobic coating coated with 7 bilayers of PDA/Ag; (a) survey scan, (b) C 1s, 

(c) S 2p, (d) O 1s, (e) Ag 3d, (f) N 1s.

XPS measurements were performed to investigate the chemical interactions between Ag nanoparticles and PDA 

interlayers (Fig. S7). Fig. S7a shows the elements of C, S, N, O and Ag. The C 1s core spectrum (Fig. S7b) can be 
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deconvoluted into seven components assigned to the carbon of C=C (283.8 eV), aliphatic C–C (284.6 eV), C–N 

(285.4 eV), C–O (286.5 eV), C=O (288.5 eV), C–S (285.7 eV) and O–C=O (291.0 eV).[2-4] The C–S and O–C=O 

components originate from n-dodecanethiol and PU sponge, respectively, while the C–N, C–O and C=O are 

attributed to polydopamine layers. In S 2p spectrum (Fig. S7c), peaks ascribed to the sulfur of Ag–S, Ag–S–R (i.e., 

AgSC12H25), and free n-dodecanethiol (R–SH) are located at 161.6, 162.5 and 163.4 eV, respectively. The 

appearance of Ag–S–R bond indicates the reaction between n-dodecanethiol and silver nanoparticles.[5] For O 1s 

spectrum (Fig. S7d), there is a peak at 532.0 and 533.0 eV, which is assigned to C–O and C=O bonds, respectively. 

Notably, a peak is also observed at 531.1 eV, which might relate to the interaction of silver with carbonyl group of 

polydopamine.[6] The reason for this assignment is that the interaction between Ag and carbonyl exhibits a 

significant degree of covalent characteristic, and has a binding energy of ~531.3 eV.[7,8] This assignment is also 

supported by the N 1s and Ag 3d spectra. In Ag 3d spectrum (Fig. S7e), the peaks attributed to Ag (0) and Ag–S 

bond locate at 367.9 and 367.1 eV, respectively. A new peak at 368.3 eV is ascribed to the Ag atom bound to 

oxygen-containing group.[7,8] Here, we attribute this peak to the chemical interaction of Ag nanoparticles with 

carbonyl group. The N 1s spectrum has three components at 399.6 eV (R–NH–R or indole groups), 397.9 eV 

(=N–R) and 397.0 eV (Fig. S7f). The peak at 397.0 eV might associate with the chemical interaction between the 

N-containing group of polydopamine and Ag nanoparticles.[9,10] The component at 399.6 eV suggests the 

conversion of the primary amine group into to secondary amine caused by the spontaneous polymerization of 

dopamine.[4] The XPS results imply the chemical interactions between the polar functionalities of polydopamine 

layers and Ag nanoparticles.
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