Supporting Information

Facile template-free synthesis of 3D porous MnO/C microspheres with controllable pore size for high-performance lithium-ion battery anodes

Kai Su,^a Chao Wang,^b Honggang Nie,^a Yan Guan,^a Feng Liu*^a and Jitao Chen*^a

^aBeijing National Laboratory for Molecular Science, Key Laboratory of Bioorganic

Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and

Molecular Engineering, Peking University, Beijing 100871, China

*E-mail: liufeng@pku.edu.cn; chenjitao@pku.edu.cn

Tel: 86-10-62761187; Fax: 86-10-62751708

^bCollege of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Fig. S1 SEM image of $Mn_{2/3}Zn_{1/3}CO_3$ prepared without the aid of ultrasonic.

Fig. S2 XRD patterns of the calcined products of $Mn_{2/3}Zn_{1/3}CO_3$ obtained at (a) 650 °C for different annealing time, and (b) 550 °C and 750 °C for 5 h.

Fig. S3 SEM images of the calcined products of $Mn_{2/3}Zn_{1/3}CO_3$ obtained at 550 °C and 750 °C for 5 h.

Fig. S4 SEM images of bare MnO prepared from $Mn_{1/2}Zn_{1/2}CO_3$ in the absence of glucose.

Fig. S5 Cyclic voltammograms of four MnO/C materials obtained at a scan rate of 0.5 mV s^{-1} between 0.01 and 3 V.

Fig. S6 The discharge-charge curves of MnO/C-3 (a) and MnO/C-4 (b) at the charge and discharge current densities of 200 and 800 mA g^{-1} , respectively.

Sample	Specific surface area	Pore size	Ref.
	$(m^2 g^{-1})$	(nm)	
MnO/graphite nanosheet	58.1	_	1
MnO	52.5	20/60	2
MnO@C core-shell nanowire	6.86	13.2	3
MnO@1-D carbon composite	64	24.57	4
MnO/graphene	50.3	2.6	5
Mesoporous MnO/C network	82.7	2.8/7.6	6
Porous C–MnO disk	75.3	~13	7
Porous MnO/C nanotube	40	7.7	8
Hollow porous MnO/C microsphere	76.9	10.9/86.8	9

Table S1 BET surface areas and pore sizes of the reported porous MnO materials.

 Table S2 Electrochemical performances of the reported MnO anode materials.

Sample	Reversible capacity (mAh g ⁻¹)	Ref.
	(Current density (mA g ⁻¹))	
MnO/graphite nanosheet	750(100), 230(600)	1
MnO	776.5(100), 350(1600)	2
MnO@C core-shell nanowire	816(100), 462(2000)	3
MnO@1-D carbon composite	850(200), 350(3000)	4
MnO/graphene	921.7(200), 625.8(3000)	5
Mesoporous MnO/C network	1224(200), 731(1500)	6
Porous C-MnO disk	1044.2(100), 534.6(1000)	7

Porous MnO/C nanotube	744.1(200), 302.5(3200)	8
Hollow porous MnO/C microsphere	741.8(100), 234.7(3000)	9
MnO nanorod	627(0.1 mA cm ⁻²)	10
C/MnO	585(100), 210(1600)	11
MnO/C core-shell nanorod	790(200)	12
Coaxial MnO/C nanotube	500(188.9)	13
MnO/C	440(150), 235(755)	14
MnO/graphene nanosheet	650(151), 410(3778)	15
N-MnO/graphene nanosheet	700(100), 260(2000)	16
MnO@C core-shell nanoplate	770(200)	17
MnO/graphene nanosheet	670(100), 402(1000)	18
MnO/reduced graphene oxide sheet	542.5(200), 325.6(800)	19
MnO/carbon nanotubes	605.0(100), 424.9(1000)	20
Multi-walled carbon nanotubes/MnO/C	670(100), 390(2580)	21
MnO/multi-walled carbon nanotubes	532.3(180.12)	22
MnO/C	200(25)	23
MnO/C	688.5(100)	24
MnO/N-doped carbon webs	900(200), 600(2500)	25
Porous MnO/C microsphere	730(100), 410(1600)	26
Porous MnO nanoflake	568.7(246), 376.4(2460)	27
Porous MnO@C microsphere	560(200), 308(800)	28
MnO@C core-shell composites	839(200), 644(3000)	29
Porous MnO microsphere	769(151), 577.2(1510)	30
3D MnO/carbon nanosheets	890(200), 685(2000)	31
Carbon nanofiber@MnO	750(200)	32

References

- 1 S. Y. Liu, J. Xie, Y. X. Zheng, G. S. Cao, T. J. Zhu and X. B. Zhao, *Electrochim. Acta*, 2012, **66**, 271–278.
- 2 G. L. Xu, Y. F. Xu, J. C. Fang, F. Fu, H. Sun, L. Huang, S. H. Yang and S. G. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 6316–6323.
- 3 X. W. Li, S. L. Xiong, J. F. Li, X. Liang, J. Z. Wang, J. Bai and Y. T. Qian, *Chem. Eur. J.*, 2013, **19**, 11310–11319.
- 4 X. N. Li, Y. C. Zhu, X. Zhang, J. W. Liang and Y. T. Qian, *RSC Adv.*, 2013, **3**, 10001–10006.
- 5 Y. M. Sun, X. L. Hu, W. Luo, F. F. Xia and Y. H. Huang, *Adv. Funct. Mater.*, 2012, 23, 2436–2444.

- 6 W. Luo, X. L. Hu, Y. M. Sun and Y. H. Huang, ACS Appl. Mater. Interfaces, 2013, 5, 1997–2003.
- 7 Y. M. Sun, X. L. Hu, W. Luo and Y. H. Huang, J. Mater. Chem., 2012, 22, 19190–19195.
- 8 G. L. Xu, Y. F. Xu, H. Sun, F. Fu, X. M. Zheng, L. Huang, J. T. Li, S. H. Yang and S. G. Sun, *Chem. Commun.*, 2012, 48, 8502–8504.
- 9 Y. Xia, Z. Xiao, X. Dou, H. Huang, X. H. Lu, R. J. Yan, Y. P. Gan, W. J. Zhu, J. P. Tu,
 W. K. Zhang and X. Y. Tao, *ACS Nano*, 2013, 7, 7083–7092.
- 10 X. P. Fang, X. Lu, X. W. Guo, Y. Mao, Y. S. Hu, J. Z. Wang, Z. X. Wang, F. Wu, H. K. Liu and L. Q. Chen, *Electrochem. Commun.*, 2010, **12**, 1520–1523.
- 11 K. F. Zhong, X. Xia, B. Zhang, H. Li, Z. X. Wang and L. Q. Chen, J. Power Sources, 2010, 195, 3300–3308.
- 12 B. Sun, Z. X. Chen, H. S. Kim, H. Ahn and G. X. Wang, J. Power Sources, 2011, 196, 3346–3349.
- 13 Y. L. Ding, C. Y. Wu, H. M. Yu, J. Xie, G. S. Cao, T. J. Zhu, X. B. Zhao and Y. W. Zeng, *Electrochim. Acta*, 2011, 56, 5844–5848.
- 14 Y. M. Liu, X. Y. Zhao, F. Li and D. G. Xia, *Electrochim. Acta*, 2011, 56, 6448–6452.
- 15 C. T. Hsieh, C. Y. Lin and J. Y. Lin, *Electrochim. Acta*, 2011, 56, 8861–8867.
- 16 K. J. Zhang, P. X. Han, L. Gu, L. X. Zhang, Z. H. Liu, Q. S. Kong, C. J. Zhang, S. M. Dong, Z. Y. Zhang, J. H. Yao, H. X. Xu, G. L. Cui and L. Q. Chen, *ACS Appl. Mater. Interfaces*, 2012, 4, 658–664.
- 17 X. Zhang, Z. Xing, L. L. Wang, Y. C. Zhu, Q. W. Li, J. W. Liang, Y. Yu, T. Huang, K. B. Tang, Y. T. Qian and X. Y. Shen, *J. Mater. Chem.*, 2012, **22**, 17864–17869.
- 18 D. F. Qiu, L. Y. Ma, M. B. Zheng, Z. X. Lin, B. Zhao, Z. Wen, Z. B. Hu, L. Pu and Y. Shi, *Mater. Lett.*, 2012, 84, 9–12.
- 19 Y. J. Mai, D. Zhang, Y. Q. Qiao, C. D. Gu, X. L. Wang and J. P. Tu, J. Power Sources, 2012, 216, 201–207.
- 20 S. D. Xu, Y. B. Zhu, Q. C. Zhuang and C. Wu, Mater. Res. Bull., 2013, 48, 3479–3484.
- X. F. Sun, Y. L. Xu, P. Ding, G. G. Chen and X. Y. Zheng, *Mater. Lett.*, 2012, 113, 186–189.
- X. F. Sun, Y. L. Xu, P. Ding, M. R. Jia and G. Ceder, *J. Power Sources*, 2013, 244, 690–694.
- 23 Q. Hao, L. Q. Xu, G. D. Li, Z. C. Ju, C. H. Sun, H. Y. Ma and Y. T. Qian, J. Alloy. Compd., 2011, 509, 6217–6221.
- 24 J. Liu and Q. M. Pan, *Electrochem. Solid-State Lett.*, 2010, 13, A139–A142.

- 25 W. M. Chen, L. Qie, Y. Shen, Y. M. Sun, L. X. Yuan, X. L. Hu, W. X. Zhang and Y. H. Huang, *Nano Energy*, 2013, 2, 412–418.
- 26 K. F. Zhong, B. Zhang, S. H. Luo, W. Wen, H. Li, X. J. Huang and L. Q. Chen, J. Power Sources, 2011, 196, 6802–6808.
- 27 X. W. Li, D. Li, L. Qiao, X. H. Wang, X. L. Sun, P. Wang and D. Y. He, *J. Mater. Chem.*, 2012, 22, 9189–9194.
- 28 X. Z. Wang, S. Qiu, G. X. Lu, C. Z. He, J. R. Liu, L. Q. Luan and W. Liu, *CrystEngComm*, 2014, 16, 1802–1809.
- 29 S. B. Wang, Y. B. Ren, G. R. Liu, Y. L. Xing and S. C. Zhang, *Nanoscale*, 2014, 6, 3508–3512.
- 30 X. W. Li, X. N. Shang, D. Li, H. W. Yue, S. Y. Wang, L. Qiao and D. Y. He, Part. Part. Syst. Charact., 2014, DOI: 10.1002/ppsc.201400010.
- 31 H. L. Wang, Z. W. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. H. Tan, B. Zahiri, B.
 C. Olsen, C. M. B. Holt and D. Mitlin, *Nano Lett.*, 2014, 14, 1987–1994.
- 32 G. Q. Zhang, H. B. Wu, H. E. Hoster and X. W. Lou, *Energy Environ. Sci.*, 2014, 7, 302–305.