Electronic Supporting Information

Aqueous dispersions of layered double hydroxide/polyacrylamide nanocomposites: preparation and rheology

Ziqiao Hu and Guangming Chen*

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

E-mail: chengm@iccas.ac.cn (G. Chen)

Fig. S1 Dependence of η_{sp}/Cr or $\ln \eta_r/Cr$ on Cr for calculation of [η], wherein $\eta_{sp} = \eta_r$ -1, and Cr = C / C_{0.}

Fig. S1 shows the dependence of specific viscosity (η_{sp}) or $\ln\eta_r$ on the ratio (Cr) of the diluted concentration to the initial PAM solution concentration (C0), where $\eta_{sp} = \eta_r - 1$. According to the two intercepts of the fitting lines, the average value (H) was obtained. Then, [η] was measured to be [η] = H/C0 = 451.2 mL g⁻¹. The corresponding average molecular weight was calculated to be 1.67×10^6 , according to the equation of M = $802 \times [\eta]^{1.25}$.

Fig. S2 Particle size distributions measured by DLS for the aqueous dispersions of the LDH-Ise at different concentrations.

Fig. S3 Comparison of the ξ potentials between the neat LDH and the mixture of LDH+AIBA (AIBA content: 0.1 wt%).