Supporting Information

Surface treatment with Al^{3+} on Ti-doped α -Fe₂O₃ nanorod arrays photoanode for efficient photoelectrochemical water splitting

Zewen Fu^a, Tengfei Jiang^a, Lijing Zhang^a, Bingkun Liu^a, Dejun Wang^{a,c}, Lingling Wang^{*,b} and Tengfeng Xie^{*,a}.

^a State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.

^b State Key Laboratory of Supramolecular structure and materials, College of Chemistry, Jilin University,

Changchun 130012, People's Republic of China.

^c Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.

*Corresponding author. Tel.: +86 431 85168093. E-mail: xietf@jlu.edu.cn and ltlwll98003082@aliyan.com.

Fig. S1 XPS survey spectra of Fe₂O₃-Al and Ti-Fe₂O₃-Al.

Fig. S2 Dark current for water oxidation (a) and Mott-Schottly plots (b) of Fe₂O₃, Fe₂O₃-Al, Ti-Fe₂O₃ and Ti-Fe₂O₃-Al.

The onset potential of dark current can provide information as to electrocatalytic activity of water oxidation on the Fe_2O_3 electrode.¹ Compared with Fe_2O_3 and $Ti-Fe_2O_3$, the dark onset potential of Fe_2O_3 -Al and $Ti-Fe_2O_3$ -Al shows an anodic shift. In general, a lower dark current onset potential indicates higher electrocatalytic activity for water oxidation.² This indicates that the surface treatment with Al^{3+} makes the electrode less catalytic for O_2 evolution. The donor concentration (N_d) and flat band potential (V_{fb}) can be quantified by the Mott-Schottky equation.³

 $1/C^{2} = (2/e\varepsilon_{0}\varepsilon N_{d})[(V-V_{fb})-kT/e]$

Where the C is the capacitance of the space charge region, ε_0 is the vacuum permittivity, ε is the dielectric constant of α -Fe₂O₃, e is the electron charge, V is the electrode applied potential, k is the Boltzmann constant, T is the absolute temperature, and N_d is the donor concentration. In general, the impact of temperature term is small and can be neglected. All samples show a positive slope in the Mott-Schottky plots, indicating that they are n-type semiconductors. The donor concentration is calculated with the equation.^{4, 5}

 $N_d = (2/e\varepsilon\varepsilon_0)[d(1/C^2)/dV]^{-1}$

With the ε value of 80 for α -Fe₂O₃,⁶ the N_d of Fe₂O₃ and Fe₂O₃-Al were calculated to be 2.1×10¹⁸ cm⁻³. The N_d of Ti-Fe₂O₃ and Ti-Fe₂O₃-Al were calculated to be 1.7×10²⁰ cm⁻³.

Fig. S3 Reduction dark current curves of Fe₂O₃, Fe₂O₃-Al, Ti-Fe₂O₃ and Ti-Fe₂O₃-Al, in 1 M NaOH solution with different gas bubbling (N₂ or O₂).

As shown in the Fig. S3, the dark current of Ti-Fe₂O₃ and Ti-Fe₂O₃-Al are negligible with N₂ bubbling. When O₂ was bubbling into the solution, an obvious reduction current was observed for Ti-Fe₂O₃ and Ti-Fe₂O₃-Al. The reduction current represents the electrons of Fe₂O₃ reduce O₂. Compared with Ti-Fe₂O₃, the Ti-Fe₂O₃-Al has a higher reduction current when O₂ was bubbling into solution. The same result can be seen on Fe₂O₃ and Fe₂O₃-Al. When O₂ was bubbling into the solution, Fe₂O₃-Al has a higher reduction current than Fe₂O₃. The results suggest that O₂ is reduced more easily on Fe₂O₃-Al and Ti-Fe₂O₃-Al compared with Fe₂O₃ and Ti-Fe₂O₃.

Fig. S4 The transient photocurrent of Fe₂O₃ at 1.5 V_{RHE}. 1 M NaOH, 100 mW/cm².

References

- 1. D. Cao, W. Luo, J. Feng, X. Zhao, Z. Li and Z. Zou, *Energy Environ Sci*, 2014, 7, 752.
- 2. R. L. Spray, K. J. McDonald and K.-S. Choi, J Phys Chem C, 2011, 115, 3497-3506.
- 3. N. T. Hahn and C. B. Mullins, Chem Mater, 2010, 22, 6474-6482.

- 4. T. Jiang, T. Xie, L. Chen, Z. Fu and D. Wang, *Nanoscale*, 2013, 5, 2938.
- 5. G. Wang, Y. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang and Y. Li, *Nano Lett.*, 2011, 11, 3503-3509.
- 6. F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel and K. Sivula, *Chem Sci*, 2011, 2, 737-743.