Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Supporting Information

y = 0.75	y = 0.5	y = 0.25	y = 0.125
+2	+3	+3	+4
O 2.0777	O 1.8817	O 1.8454	O 1.8299
O 2.0872	O 1.9512	O 1.9225	O 1.8358
O 2.1040	O 1.9512	O 1.9662	O 1.8400
O 2.1121	O 2.0831	O 1.9710	O 1.9070
O 3.0075	O 2.9521	O 2.2321	O 2.3731
	O 2.9521		O 2.9444
+3	+3	+4	+4
0 1.8353	O 1.9571	O 1.8734	O 1.8398
O 1.9233	O 1.9571	O 1.8794	O 1.8401
O 1.9799	O 2.0049	O 1.9329	O 1.8545
O 1.9823	O 2.0333	O 1.9836	O 1.8871
	O 2.0824	O 2.0980	O 2.2862
	Si 2.7225	O 2.2383	O 2.9624
+3	+3	+4	+3
018353	O 1.8741	O 1.8269	O 1.8350
0 1 9233	O 1.8871	O 1.8995	O 1.8621
0 1 9799	O 1.8871	O 1.9275	O 1.9104
019823	O 2.2310	O 1.9872	O 2.1653
01.9020	Si 2.7178	O 2.0175	O 2.7864
	O 2.9921	O 2.0409	Li 2.9705
	O 2.9921	Si 2.6279	
	+3	+3	+4
+2	O 1.8757	O 1.8843	O 1.8274
0 2.0777	O 1.9911	O 1.9217	O 1.8400
0 2.08/2	O 1.9911	O 1.9853	O 1.8599
0 2.1040	O 2.0032	O 2.1196	O 1.9225
0 2.1121	O 2.0737	O 2.1407	O 2.0486
0 3.0075	Si 2.6998		Si 2.6486
	Li 2.8646		Li 2.7622
	Li 2.8646		O 2.8672

<u>Table 1</u>: Structural details for Mn ions in the ground states $Li_{2y}MnSiO_4$ (y = 0.75, 0.5, 0.25 and 0.125): Oxidation state of and distances (in Å) to the neighbours up to 3 Å (see figure S1)

Figure S1.- Integrated net spin as a function of the radius around the ions in the ground states of $Li_{2y}MnSiO_4$ with y = 0.75 (a), 0.5 (b), 0.25 (c) and 0.125 (d)

Figure S2.- Integrated net spin as a function of the radius around the ions in the ground states of $Li_{0.5}Mn_{0.25}SiO_4$ for M = Mg (a), Fe (b), Co (c) and Ni(d):

<u>Table 2</u>: Structural details for M ions in the ground states $Li_{0.5}Mn_{0.75}M_{0.25}SiO_4$ (M = Mg, Fe, Co, Ni): Approximate oxidation state and distances (in Å) to the neighbours up to 3 Å (see figure S2)

Mg	Fe	Со	Ni
Mn +4	Mn +4	Mn+4	Mn+4
O 1.8514	O 1.8090	O 1.8068	O 1.8406
O 1.9173	O 1.8559	O 1.8512	O 1.8451
O 1.9568	O 1.9006	O 1.8919	O 1.9046
O 1.9875	O 1.9534	O 1.9390	O 1.9283
O 2.2737	O 1.9595	O 1.9670	O 1.9791
			Si 2.9598
Mn +4	Mn+4	Mn +4	Mn+3
O 1.9001	O 1.8236	O 1.8163	O 1.8751
O 1.9484	O 1.8947	O 1.8946	O 1.9196
O 1.9552	O 1.9137	O 1.9117	O 1.9803
O 1.9639	O 1.9961	O 1.9858	O 2.0269
O 1.9701	O 2.0404	O 2.0369	O 2.1014
O 2.1906	O 2.1248	O 2.0987	
Si 2.6460	Si 2.6398	Si 2.6195	
Li 2.9980			
Mn +4	Mn+3	Mn+3	Mn +4
O 1.8374	O 1.8937	O 1.8889	O 1.8371
O 1.8961	O 1.9620	O 1.9398	O 1.8513
O 1.9058	O 1.9732	O 1.9578	O 1.8732
O 1.9976	O 2.1086	O 2.1351	O 1.9747
O 2.0103	O 2.1492	O 2.1701	O 2.0640
O 2.0271			
Si 2.5994			
Mg+2	Fe+3	Co +3	Ni +2
O 1.9505	O 1.9060	O 1.8809	O 1.7953
O 2.0360	O 1.9089	O 1.9096	O 1.8926
O 2.0386	O 1.9376	O 1.9167	O 1.9596
O 2.0518	O 2.0205	O 1.9870	O 1.9597
O 2.1680	O 2.0997	O 2.1352	O 2.1440
	Li 2.9017	Li 2.9089	Li 2.8808
		Si 2.9706	
		O 2.9921	

Figure S3. Lattice Parameter variation of Ni doped $Li_2Mn_{1-x}Ni_xSiO_4$ showing decrease in all three parameters.

Figure S5. Powder X-ray diffraction pattens of $Li_2Mn_{1-x}Ni_xSiO_4$ samples after the carbon coating process. Asterisk denotes Bragg maxima assignable to metallic Ni.

Figure S6. Cycling of a carbon coated $\text{Li}_2\text{Mn}_{1-x}\text{Ni}_x\text{SiO}_4$ // Li cell. *Ex situ* XPS were collected at points A, B and C during the first charge.