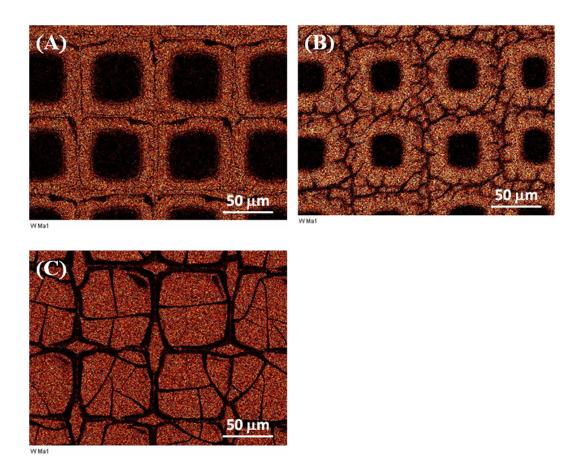
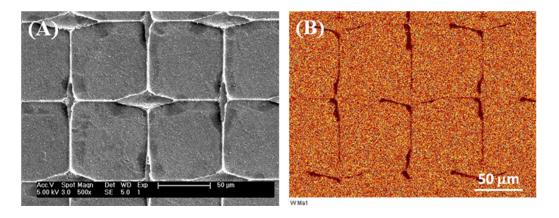
"Nano to Nano" Electrodeposition of WO₃ Crystalline Nanoparticles for Electrochromic Coatings

Liang Liu^{1,2,‡}, Michael Layani^{1,‡}, Shai Yellinek¹, Alex Kamyshny¹, Han Ling², Pooi See Lee², Shlomo Magdassi^{1,*} and Daniel Mandler^{1,*}


¹Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

²School of Materials Science and Engineering, Nanyang Technological University,
Singapore 639798, Singapore


Supporting Information

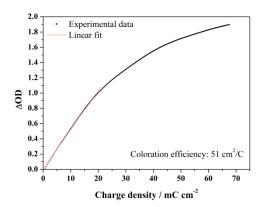

Fig. S1. Photos of 5 wt.% WO₃ dispersion at different pH after 1 h. pH from left to right: 1, 4, 8, 12. pH was adjusted by NaOH.

Fig. S2. EDX mapping of W for the WO₃ films electrodeposited on Ag grid/PET at -0.8 V (vs. Ag/AgBr QRE) for 3 min (A), 9 min (B) and 13 min (C).

Fig. S3. SEM (A) and EDX mapping of W (B) for the WO₃ films electrodeposited on Ag grid/PET at -1.1 V (vs. Ag/AgBr QRE) for 30 s.

Fig. S4. Coloration efficiency of WO_3 films electrodeposited at -1.1 V (vs. Ag/AgBr QRE) for 100 s on ITO.

Video S1. Demonstration of coloring and bleaching of the optimal nano-crystalline WO₃ film electrodeposited on ITO.