Electronic supporting information for :

Ionothermal confined self-organization for hierarchical porous magnesium borate superstructures and their application as adsorbents for efficient dye removal

Zhaoqiang Zhang^a, Wancheng Zhu^{a,*}, Ruguo Wang^a, Linlin Zhang^a, Lin Zhu^a, Qiang Zhang^{b,*}

^a Department of Chemical Engineering, Qufu Normal University, Shandong 273165, China.

^b Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology,

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

^{*} Corresponding author. Tel.: +86-537-4453130; fax: +86-10-62772051.

E-mail: <u>zhuwancheng@tsinghua.org.cn</u> (W. Zhu); <u>zhang-qiang@mails.tsinghua.edu.cn</u> (Q. Zhang).

Fig. S1. MgBO₂(OH) calcined with various heating procedures. Temperature (°C): (a)-600, (b)-650, (c)-700; time (h): $(a_1,b_1,c_1)-2.0, (a_2,b_2,c_2)-4.0, (a_3,b_3,c_3)-8.0$; heating-rate (°C min⁻¹): $(a_1,b_1,c_1)-2, (a_2,b_2,c_2)-5, (a_3,b_3,c_3)-10$. Vertical lines: red-standard pattern of Mg₃(BO₃)₂ (JCPDS No. 33-0858), blue-standard pattern of triclinic Mg₂B₂O₅ (JCPDS No. 73-2232).

Fig. S2. XRD patterns (a) and morphology evolution (b-e) of the ionothermal products formed at various temperatures for 12.0 h. Temperature (°C): (a₁, b)-120, (a₂, c)-140, (a₃, d)-160, (a₄, e)-180.

Fig. S3. XRD patterns (a) and morphology evolution (b-e) of the ionothermal products obtained at 150 °C at different growth durations. Time (h): (a₁, b)-6.0, (a₂, c)-8.0, (a₃, d)-10.0, (a₄, e)-16.0.

Fig. S4. Morphology evolution of the MgBO₂(OH) nanostructures obtained at 150 °C for 12.0 h by using different volume ratios of ILs / water as media. Volume ratio of ILs / water: (a)-8/1, (b)-3/1, (c)-2/1, (d)-0/1.

Fig. S5. MgBO₂(OH) obtained at 150 °C for 12.0 h by using (a) DMF, (b) DMA (Dimethylamine), (c) mixture of HNO₃ and DMF, and (d) liquid recovered from the former ionothermal treatment (150 °C, 12.0 h) as the solvent, respectively.

Fig. S6. SEM images of the regenerated MgBO₂(OH) (a) and Mg₂B₂O₅ (b) superstructures by calcining the corresponding adsorbents containing previously adsorbed CR at 400 °C for 2.0 h with a heating rate of 2 °C min⁻¹, and the adsorption performances of the regenerated MgBO₂(OH) (c) and Mg₂B₂O₅ (d) superstructures when used as the adsorbents for the second (- -) and third (- -) time, with the first (- -) time for comparison.

Table S1. Parameters of the isotherm models for the adsorption of CR onto the MgBO2(OH) and Mg2B2O5 superstructures atroom temperature with an initial concentration of 50 mg L^{-1} .

Samples	Langmuir isotherm model			Freundlich isotherm model		
	q_m (g mg ⁻¹)	<i>b</i> (L mg ⁻¹)	R^2	k_{f}	1/n	R^2
MgBO ₂ (OH)	228.3	0.64	0.9903	98.22	0.17	0.8890
$Mg_2B_2O_5$	139.3	0.98	0.9903	68.96	0.14	0.8766

Table S2. Parameters of the kinetic models for the adsorption of CR onto the $MgBO_2(OH)$ and $Mg_2B_2O_5$ superstructures at room temperature with an initial concentration of 50 mg L⁻¹.

Samples	$q_{e,exp}$	pseudo-first-order kinetic model			pseudo-second-order kinetic model		
	(g mg ⁻¹)	$q_{e,calc1}$ (g mg ⁻¹)	k_{l} (min ⁻¹)	<i>R</i> ²	$q_{e,calc2} (\mathrm{g \ mg^{-1}})$	$k_2 (\mathrm{mg \ g^{-1} \ min^{-1}})$	<i>R</i> ²
MgBO ₂ (OH)	97.94	26.57	0.0096	0.6192	99.01	0.0024	0.9995
$Mg_2B_2O_5$	96.59	57.59	0.0130	0.9244	97.09	0.0009	0.9967

 $\label{eq:solution} \textbf{Table S3.} Parameters of the intra-particle diffusion model for the adsorption of CR onto the MgBO_2(OH) and Mg_2B_2O_5$

|--|

Samples	$k_{difl} (\mathrm{mg} \mathrm{g}^{-1} \mathrm{h}^{-1/2})$	$k_{dif2} (\mathrm{mg \ g^{-1} \ h^{-1/2}})$	$c_{I} ({\rm mg \ g^{-1}})$	$c_2 ({\rm mg \ g^{-1}})$
MgBO ₂ (OH)	34.78	5.53	59.54	85.76
$Mg_2B_2O_5$	45.96	6.89	30.04	78.64