Supporting Information "Highly Selective CO₂ Separation Membranes Through Tunable Poly(4vinylphenolate)-CO₂ Interactions"

Thermogravimetric Analysis (TGA) / Differential Scanning Calorimetry(DSC)

Table 1: Glass transition temperatures (T_g) and melting points (T_m) of poly(4-vinylphenol) (**1a**), poly(2-methoxy-4-vinylphenol) (**1b**), poly(2,6-dimethoxy-4-vinylphenol) (**1c**), the respective copolymers with di(ethylene glycol methyl ether methacrylate) (**2a-2c**) and selected corresponding tetraalkylphosphonium poly(4-vinylphenolate)s ([P_xxxx][**1a-2c**]).

Sample	T _g [°C]	$T_m[^{\circ}C]$
1a	169.08	-
1b	97.41	-
1c	75.40	-
2a	57.70	-
2b	44.70	-
2c	46.07	-
[P ₆₆₆₁₄][1a]	-64.47	31.43
[P ₄₄₄₁₄][1a]	-69.95	30.18
$[P_{4441}][1a]$	-83.35	-61.44
[P ₄₄₄₄][1a]	-75.54	104.41
$[P_{66614}][1b]$	-61.22	21.15
$[P_{66614}][1c]$	-57.88	13.04
[P ₆₆₆₁₄][2a]	-30.03	-
$[P_{66614}][2b]$	-30.08	-
$[P_{66614}][2c]$	-50.20	-

¹H, ³¹P and ¹³C-MAS NMR Spectral Data

Monomers:

4-Vinylphenol: (300 MHz, Methanol- d_4) δ (ppm) = 7.34 – 7.21 (2H, m), 6.87 – 6.72 (2H, m), 6.65 (1H, dd), 5.58 (1H, dd), 5.04 (1H, dd).

2,6-Dimethoxy-4-vinylphenol: 300 MHz, Methanol- d_4) δ (ppm) = 6.71 (2H, s), 6.62 (1H,dd), 5.61 (1H, dd), 5.07 (1H, dd), 3.84 (6H, s).

Polymers:

Poly(2-methoxy-4-vinylphenol) (1b): (250 MHz, Methanol-*d*₄):δ (ppm)= 6.88 – 5.80 (3H, m), 3.84 – 3.45 (3H, m), 2.40 – 0.81 (3H, m).

Poly(2,6-dimethoxy-4-vinylphenol) (1c): (300 MHz, Methanol-*d*₄): δ (ppm) = 5.95 (2H, m), 3.65 (6H, m), 1.68 (3H, m).

Poly(4-vinylphenol-*co***-di(ethylene glycol) methyl ether methacrylate) (2a)**: (250 MHz, Methanol- d_4) δ (ppm) = 7.02 - 6.38 (4H, br), 4.16 - 3.33 (11H, br), 2.75 - 1.19 (5H, br), 1.11 - 0.42 (3H, br).

Poly(2-methoxy-4-vinylphenol*-co***-di(ethylene glycol) methyl ether methacrylate) (2b)**: (250 MHz, Methanol- d_4) δ (ppm) = 6.93 – 5.98 (3H, br), 4.21 – 3.44 (14H, br), 2.79 – 1.21 (5H, br), 1.19 – 0.36 (3H, br).

Poly(2,6-dimethoxy-4-vinylphenol-*co*-di(ethylene glycol) methyl ether methacrylate) (2c): (1H, 300 MHz, Methanol- d_4): δ (ppm) = 1.33 (8H, br), 3.64 (17H, br), 6.24 (2H, br).

Polyelectrolytes:

Tributylmethylphosphonium Poly(4-vinylphenolate) ([P₄₄₄₁]**[1a]):** (31P, 360 MHz, Methanol- d_4): δ (ppm) = 33.13 (1P, s)

Tetrabutylphosphonium Poly(4-vinylphenolate) ([P₄₄₄₄]**[1a]):** (1H, 360 MHz, Methanol d_4) δ (ppm) = 6.70 - 6.25 (4H, br), 2.29 - 2.15 (8H, m), 1.68 - 1.14 (19H, m), 0.96 (12H, m), (31P, 360 MHz, Methanol- d_4): δ (ppm) = 33.14 (1P, s)

Tributyltetradecylphosphonium Poly(4-vinylphenolate) ([P₄₄₄₁₄]**[1a]):** (1H, 360 MHz, Methanol- d_4) δ (ppm) = 6.70 – 6.25 (4H, br), 2.29 – 2.15 (8H, m), 1.68 – 1.14 (39H, m), 0.96 (12H, m), (31P, 360 MHz, Methanol- d_4) δ (ppm) = 33.14.

Trihexyltetradecylphosphonium Poly(4-vinylphenolate) ([P₆₆₆₁₄][1a]): (1H, 360 MHz, Methanol- d_4) δ (ppm) = 6.70 – 6.25 (4H, br), 2.29 – 2.15 (8H, m), 1.68 – 1.23 (48H, m), 0.96 (12H, m), (31P, 360 MHz, Methanol- d_4) δ (ppm) = 33.13, (13C CPMAS-NMR 4mm rotor, 12 kHz, 35400 scans) δ (ppm) = 15.1, 23.8, 30.8, 33.0, 40.0, 49.7, ~119.0, ~120.0, ~132.0.

Trihexyltetradecylphosphonium Poly(4-vinylphenolate)-CO₂ ([P₆₆₆₁₄][1a]-CO₂): (13C CPMAS-NMR 4mm rotor, 12 kHz, 45800 scans) \delta (ppm) = 15.1, 23.8, 30.8, 33.0 40.0, ~117.0, ~127.0, ~133, 158.6, 162.2.

Trihexyltetradecylphosphonium Poly(2-methoxy-4-vinylphenolate) ([P₆₆₆₁₄][1b]): (1H, 360 MHz, Methanol- d_4) δ (ppm) = 6.70 – 6.25 (3H, br), 3.81 (3H, m), 2.29 – 2.15 (8H, m), 1.68 – 1.23 (48H, m), 0.96 (12H, m), (31P, 360 MHz, Methanol- d_4) δ (ppm) = 33.15.

Trihexyltetradecylphosphonium Poly(2,6-dimethoxy-4-vinylphenolate) ([P₆₆₆₁₄][1c]): (1H, 360 MHz, Methanol- d_4): δ (ppm) = 5.99 (2H, br), 3.71 (6H, m), 2.29 – 2.15 (8H, m),

1.68 – 1.23 (48H, m), 0.96 (12H, m), (31P, 360 MHz, Methanol- d_4 , 300K): δ (ppm) = 56.72, 34.62.

Trihexyltetradecylphosphonium Poly(4-vinylphenolate co-di(ethylene glycol) methyl ether methacrylate) ([P₆₆₆₁₄][2a]):(1H, 250 MHz, Methanol- d_4) δ (ppm) = 7.02 – 6.38 (4H, br), 4.16 – 3.33 (11H, br), 2.75 – 1.19 (5H, br), 2.29 – 2.15 (8H, m), 1.68 – 1.23 (48H, m), 1.11 – 0.42 (3H, br), 0.96 (m, 12H), (31P, 360 MHz, Methanol- d_4) δ (ppm) = 33.13.

Trihexyltetradecylphosphonium Poly(2-methoxy-4-vinylphenolate-co-di(ethylene glycol) methyl ether methacrylate) [P₆₆₆₁₄][2b]:(1H, 360 MHz, Methanol- d_4): δ (ppm) = 6.70 - 6.25 (3H, br), 4.16 - 3.33 (11H, br), 3.81 (3H, m), 2.75 - 1.19 (5H, br), 2.29 - 2.15 (8H, m), 1.68 - 1.23 (48H, m), 1.11 - 0.42 (3H, br), 0.96 (m, 12H), (31P, 360 MHz, Methanol- d_4) δ (ppm) = 33.15

Trihexyltetradecylphosphonium Poly(2,6-dimethoxy-4-vinylphenolate co-di(ethylene glycol) methyl ether methacrylate) [**P**₆₆₆₁₄][**2c**]: (¹H, 360 MHz, Methanol-*d*₄): δ (ppm) = 5.99 (2H, m), 3.71 (6H, m), 4.16 – 3.33 (11H, br), 2.75 – 1.19 (5H, br), 2.29 – 2.15 (8H, m), 1.68 – 1.23 (48H, m), 1.11 – 0.42 (3H, br), 0.96 (m, 12H), (³¹P, 360 MHz, Methanol-*d*₄): δ (ppm) = 56.72, 34.62.

ATR FT-IR

Poly(4-vinylphenol)(1a): (ATR-IR, cm⁻¹) 3.050-3.600 broad, 3.020, 2.820, 1.600, 1.510, 1.450, 1.380, 1.230, 1.170, 1.130, 1.040, 830, 720.

Trihexyltetradecylphosphonium Poly(4-vinylphenolate) ([P₆₆₆₁₄][1a]): (ATR-IR, cm⁻¹)1.930, 1.900, 1.840, 1.600, 1.450, 1.230, 1.170, 1040, 830, 720.

Trihexyltetradecylphosphonium Poly(4-vinylphenolate)-CO₂ ([P₆₆₆₁₄][1a]-CO₂): (ATR-IR, cm⁻¹)1.930, 1.900, 1.840, 1.600, 1.510, 1.450, 1.230, 1.170, 1040, 830, 720.

Density

Table 2: Density at 25 °C as determined by the solvent flotation method or a volumetric method (†)

Sample	ρ [g / cm ³]
[P ₄₄₄₁₄][1a]	0.98 ± 0.020
$[P_{4441}][1a]$	0.99±0.04†
[P ₄₄₄₄][1a]	$1.00{\pm}0.018$
[P ₆₆₆₁₄][1a]	1.02 ± 0.015
$[P_{66614}][1b]$	1.00±0.04†
$[P_{66614}][1c]$	0.98 ± 0.05 †
[P ₆₆₆₁₄][2a]	$0.97 {\pm} 0.005$
$[P_{66614}][2b]$	0.99 ± 0.020
$[P_{66614}][2c]$	1.00±0.05†

	Count p	er Eff	ective	Repe	ating U	nit			Volume Ca	alculation											
Substance	•	-	P	z	b Ra	Rn	a M	V_Bondi	5.92*Nb	14.7*Ra 3.	8*Rna	v_vdw	< 0	N N	σ	<	<	FFV	8	2-Solubility	CO2-Solubility
	Ŧ	± ۳	Ŧ	Ŧ	Ē	Ξ	2	[εν	Ξ _	Ξ	-	[A^3]	[A^3]	Ξ	[g/cm^3]	[cm^3/g]	[A^3/molecule	-	5	t%]	[V(STP)/V]
[P4441][1a]	21	27	4	4	59	4	0	666,74	349,28	14,7	_	302,	8 393,6	326,4	6,0 t	9 1,0:	10 547,	л О	,28	1,1	5,5
[P4444][1a]	24	33	4	4	66	1	0	771,91	390,72	14,7	_	366,	5 476,4	1 368,!	6,0	9 1,0:	10 618,	1 0,	,23	0,6	з
[P44414][1a]	34	53	4	4	96	4	0	1122,47	568,32	14,7	_	0 539,	5 701,3	3 508,	3 0,9	8 1,0	20 862,	1 0,	,19	2,7	13,4
[P66614][1a]	40	75	4	4	114	1	0	1405,19	674,88	14,7	_	0 715,	6 930,3	3 603,0	1,0	2 0,9	30 981,	7 0,	,05	2,3	11,8
[P66614][1b]	41	77	2	4	118	1	0	1454,96	698,56	14,7	_	0 741,	7 964,2	2 633,0	U	1 1,00	1051,	2 0,	,08	1,7	8,6
[P66614][1c]	42	79	ω	4	122	1	0	1504,72	722,24	14,7	_	0 767,	8 998,:	L 663,:	9,0 1	8 1,0	20 1123,	5 ,0	,11	0,7	3,5
[P66614][2a]	49	91	ы	4	144	4	0	1765,06	852,48	14,7	_	D 897,	9 1167,2	2 791,:	2 0,9	7 1,03	31 1354,	50,0	,14	2,6	12, 7
[P66614][2b]	50	93	6	4	148	4	0	1814,83	876,16	14,7	_	0 924,	0 1201,2	2 821,	2 0,9	9 1,0:	10 1377,	50,0	,13	2	10,0
[P66614][2c]	51	95	7	4	152	4	0	1864,59	899,84	14,7	_	0 950,	1 1235,:	l 851,:		1 1,00	00 1413,	6 0,	,13	3,4	17,2
Poly(DEGMEMA)	6 3	16 4 (4 9	0	30	0	0	359,87	177,6	0	0	0 182,	3 236,9	9 188,	2 1,0	2 0,9	30 306,	4 0,	,23	o	0,0
Bondi radii [A] [Bondi, 1964]	1,7	1,2 :	L,52	1,8																	
VdW Volume [A^3]	20,6	7,2	14,7 2	4,4																	
Atom mass [unit]	12,01	ч	16	31																	
V_CO2 STP [cm^3/g]	505,1																				
Na	6E+23																				
conversion factors																					
A^3 to cm^3	1E-24																				
unit to gram	2E-24																				

Single Gas Transmission Rates (GTR) and Coating Thickness

Table 4: Gas transmission rates (GTR) and ideal permeability selectivities α of CO₂ and N₂ through composite membranes prepared from materials [P₆₆₆₁₄][1a]-[P₆₆₆₁₄][2c] at 15 °C and at 25 °C.

Polyelectrolyte	e GTR [Ld ⁻	¹ m ⁻² bar ⁻¹]	ac	02/N2
	15 °C	25 °C	15 °C	25 °C
	$CO_2 N_2 C$	O ₂ N ₂		
[P ₆₆₆₁₄][1a]	742 35.0 7	70 57.0	21.20	13.51
$[P_{66614}][1b]$	430 28.5 4	63 35.0	15.09	13.23
$[P_{66614}][1c]$	385 17.3 4	87 25.7	22.23	18.95
[P ₆₆₆₁₄][2a]	282 6.50 3	03 12.2	43.38	24.85
$[P_{66614}][2b]$	207 4.80 1	60 5.34	43.13	29.96
$[P_{66614}][2c]$	199 2.94 3	47 11.3	67.69	30.71

Permeability may be substantially influenced by sorption- or pressure-induced phenomena such as plasticization and compaction. In these cases, gas permeability is no longer independent of absolute permeate- and retentate side pressure levels, which could not be varied in the permeation measurement setup. Also, potential chemical transport facilitation is sensitive to back pressure of the permeate species.

Punctual Coating Thickness Measurements according to SEM

Table 5: Coating thickness d of composite membranes prepared from materials $[P_{66614}][1a]-[P_{66614}][2c]$ as measured punctually by scanning electron microscopy (SEM).

Polyelectrolyte	d [µm]
$[P_{66614}][1a]$	5.15
$[P_{66614}][1b]$	4.40
$[P_{66614}][1c]$	3.98
$[P_{66614}][2a]$	3.69
$[P_{66614}][2b]$	5.51
$[P_{66614}][2c]$	8.85

Figure 1: Exemplary cross-section SEM imageof a composite membrane composed of a polysiloxane-based flat-sheet substrate and a coating of Trihexyltetradecylphosphonium Poly(2-methoxy-4-vinylphenolate-co-di(ethylene glycol) methyl ether methacrylate) ([P₆₆₆₁₄][2b])

Figure 2: Exemplary cross-section SEM image of a composite membrane composed of a polysiloxane-based flat-sheet substrate and a coating of Trihexyltetradecylphosphonium Poly(2,6-dimethoxy-4-vinylphenolate-co-di(ethylene glycol) methyl ether methacrylate) ([P₆₆₆₁₄][2c])

Figure 3: Exemplary cross-section SEM image of a composite membrane composed of a polysiloxane-based flat-sheet substrate and a coating of Trihexyltetradecylphosphonium Poly(4-vinylphenolate-co-di(ethylene glycol) methyl ether methacrylate) ([P₆₆₆₁₄][2a])