Supporting Information

Iodine-treated heteroatom-doped carbon: conductivity driven electrocatalytic activity

Kiran Pal Singh, Min Young Song and Jong-Sung Yu*

Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea.

Summary: This file contains 9 pages, 7 figures and 2 tables

Fig. S1 FTIR spectra of PANI, PANI-200 and PANI-05I-200

Fig. S2 XPS spectra of a) CPANI, CPANI-02I, CPANI-05I and CPANI-10I and b) PANI, PANI-02I, PANI-05I and PANI-10I.

Fig. S3 Deconvoluted XPS spectra of C 1s for a) CPANI, b) CPANI-02I, C) CPANI-05I and d) CPANI-10I.

Fig. S4 (a) Deconvolution of S 2p into three main components, S1: (S P3/2), S2: (S P1/2) and S3: (SOx) and (b) distribution of major components of sulfur present in CPANI, CPANI-02I, CPANI-05I and CPANI-10I.

Fig. S5 Design of four probe apparatus used to measure conductivity of the powder carbon samples and circuit diagram of the resistance measurement technique.

Fig. S6 Linear sweep voltammetry (LSV) curves of ORR in O₂- and N₂-saturated atmosphere at 1600 rpm for (a) CPANI, (b) CPANI-021 and (c) CPANI-10I, and (d) LSV curves of ORR at various rotation rates for CPANI-05I

Fig. S7 (a) Nitrogen adsorption-desorption isotherms and (b) the corresponding pore size distribution curves of CPANI, CPANI-02I, CPANI-05I and CPANI-10I.

Table S1 Nitrogen sorption and electrochemical conductivity data of untreated CPANI and I-treated CPANI-02I, CPANI-05I and CPANI-10I

	Physical characteristics						
Sample	BET total surface area (m²g⁻¹)	Micropore surface area (m²g⁻¹)	Pore volume (cm ³ g ⁻¹)	Micropore volume (cm³g-1)	H-K pore size (nm)	Conductivity (S/cm) at 18 MPa	
CPANI	855	811	0.38	0.36	0.48	6.50	
CPANI-02I	1104	1058	0.48	0.42	0.50	14.05	
CPANI-05I	1130	1082	0.48	0.41	0.48	19.77	
CPANI-10I	1060	1011	0.40	0.38	0.49	17.87	

 Table S2 Comparison of ORR activities and kinetics of reported heteroatom-doped carbon catalysts

 with the iodine treated heteroatom-doped catalyst in this work.

Catalyst	Preparation method/Pyrolysis temperature	Electrol yte	Onset potential (V vs. Ag/AgCl)	Current density (mA/cm ⁻²)	Peak Potential. (V)	Referenc e
I-treated heteroatom- doped carbon	Pyrolysis of PANI in presence of iodine at 900 °C	0.1 М КОН	+0.021	5.71	-0.14	This work
N-doped graphene	Annealing of GO/PANI composite at 1000°C	0.1 M KOH	N/A	N/A	-0.22	1
N-doped graphene	Heat treatment of graphite with 4-aminobenzoic acid and polyphosphoric acid/P2O5 at 170° C	0.1 M KOH	-0.13	N/A	N/A	2
Metal-free N- doped carbon aerogels made from ionic liquids	Carbonization of ionic liquid 1-ethyl-3- methylimidazolium dicyanamide mixed with the NaCl/ZnCl2 at 1000 °C	0.1 M KOH	N/A	~6.0	-0.2	3
S-doped graphene	Annealing of GO and benzyl disulfide at 1050° C	0.1 M KOH	N/A	N/A	-0.29	4
N-S doped graphene	Annealing of melamine/ BDS/GO/SiO2 mixture at 900°C	0.1 M KOH	-0.06	N/A	-0.24	5
N-S doped graphene	Dispersion of GO in thiourea solution which is autoclaved at 180° C. After freeze drying no carbonization was carried out	0.1 M KOH	-0.15	3.9	-0.36	6
N-S doped graphene	GO was heated with 2- aminothiophenol in presence of polyphosphoric acid at 200° C	0.1 M KOH	-0.129ª	N/A	-0.40 ^a	7
N-doped carbon from ionic liquids and nucleobases	By heating nonvolatile ionic liquids featuring dicyanamide anions to temperatures of 1000 °C	0.1 M KOH	0.035	N/A	-0.192	8
Edge- halogenated (I) graphene	Ball-milling of graphite in the presence of I ₂	0.1 M KOH	-0.14	N/A	-0.22	9

I-doped graphene	Pyrolysis of GO with I2 at 1100°C	0.1 M KOH	-0.08	N/A	-0.29	10
Fe containing N-doped carbon	Annealing of iron-compex (derived from bidppz and FeSO ₄) at 800°C	0.1 M KOH	-0.02 ^b	6.0 ^C	-0.03 ^b	11

All the SCE^a and RHE^b potentials have been converted to the Ag/AgCl potential.

C. The corresponding current densities are estimated from figure in reported literature.

References:

- 1. Z. Lin, G. Waller, Y. Liu, M. Liu and C. P. Wong, Carbon, 2013, 53,130.
- I. Y. Jeon, D. Yu, S. Y. Bae, H. J. Choi, D. W. Chang, L. Dai and J. B. Baek. *Chem. Mater.*, 2011,
 23, 3987.
- 3. K. Elumeeva, N. Fechler, T. P. Fellinger and M. Antonietti. Mater. Horiz., 2014, Advance Article.

4. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen and S. Huang. *ACS Nano*, 2012, 1, 205.

- 5. J. Liang, Y. Jiao, M. Jaroniec, S. Zhang and S. Z, Qiao, Angew. Chem. Int. Ed., 2012, 51, 11496.
- 6. Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang and X. Feng, Carbon, 2013, 62, 296.
- 7. Z. Zuo, W. Li and A. Manthiram, J. Mater. Chem. A, 2013, 1, 10166.
- 8 W. Yang, T.-P. Fellinger, and M. Antonietti, J. Am. Chem. Soc., 2011, 133, 206.
- 9. I. Y. Jeon, H. J. Choi, M. Choi, J. M. Seo, S. M. Jung, M. J. Kim, S. Zhang, L. Zhang, Z. Xia, L. Dai,
- N. Park and J. B. Baek, *Sci. Rep., 2013*, **3**, 1810.
- 10. Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu and S. Huang, Chem. Commun., 2012, 48, 1027.
- 11. L. Lin, Q. Zhu and A. W. Xu, J. Am. Chem. Soc., 2014, 134, 11027.