Supporting information

General Synthesis of Hollow MnO₂, Mn₃O₄, and MnO Nanospheres as Superior Anode Materials for Lithium Ion Batteries

Jie Yue,^a Xin Gu,^a Liang Chen,^a Nana Wang,^a Xiaolei Jiang,^a Huayun Xu,^a Jian Yang^{*a} and Yitai Qian^{*ab} 5

^a Key Laboratory of Colloid and Interface Chemistry, Ministry of Education. School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China; E-mail: yangjian@sdu.edu.cn

^b Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P.R. China. E-mail: ytqian@ustc.edu.cn

Fig. S1 TEM images of (a) carbon nanospheres and (b,c) CNSs@MnO₂ spheres. (d) XRD patterns of carbon nanospheres and CNSs@MnO₂ spheres.

15

Fig. S2 Nitrogen adsorption-desorption isotherms of (a) MnO₂, (b) Mn₃O₄ and (c) MnO hollow spheres.

5 Fig. S3 Cyclic voltammograms (CVs) of (a) MnO_2 , (b) Mn_3O_4 and (c) MnO hollow nanospheres at a scanning rate of 0.1 mV s⁻¹.

Fig. S4 First Discharge-charge curves of (a) MnO₂, (b) Mn₃O₄ and (c) MnO hollow nanospheres at various current densities.

Fig. S5 TEM images of the electrodes made of (a) MnO_2 , (b) Mn_3O_4 and (c) MnO after 20 cycles at 100 mA g⁻¹.