Electronic Supplementary Information

In situ synthesis of SnO₂ nanoparticles encapsulated in micro/mesoporous carbon foam as high-performance anode material for Lithium ion batteries

Xiulin Fan,^{ab} Jie Shao,^a Xuezhang Xiao,^a Xinhua Wang,^a Shouquan Li,^a Hongwei Ge,^a

Lixin Chen*,^a Chunsheng Wang*^b

^aState Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials

and Application for Batteries of Zhejiang Province, Department of Materials Science

and Engineering, Zhejiang University, Hangzhou 310027, PR China

^bDepartment of Chemical and Biomolecular Engineering, University of Maryland,

College Park, MD 20742, USA

^{*} To whom correspondence should be addressed.

E-mail address: lxchen@zju.edu.cn (L.X. Chen)

^{*} To whom correspondence should be addressed.

E-mail address: cswang@umd.edu (C.S. Wang)

Figure S1. Thermogravimetric (TGA) profile of the $SnO_2@C$ porous composite in air,

heating rate: 3 °C/min.

Figure S2. TEM image of the SnO₂@C porous composite after ultrasonicated in

ethanol for up to 6 h.

Figure S3. Galvanostatic charge-discharge profiles of the mixture of commercial SnO₂ nanoparticles and carbon black electrode at a constant current density of 500

mA g⁻¹.