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Preparation of the MnO/C with different contents of MnO: 

China fir (CF) was air dried with the water content lower than 20 wt.%. The CF 

xylem fibres were smashed and sieved to powder. 1.00 g of the CF powder was 

washed three times in deionized water to remove the dissolved impurity. To prepare 

MnO/C nanocomposite materials with different MnO contents, different amouts of 

KMnO4 and Na2SO4, including 0.02 g KMnO4 and 0.02 g Na2SO4 for MnO/C-1.9, 

0.035 g KMnO4 and 0.035 g Na2SO4 for MnO/C-3.2 and 0.09 g KMnO4 and 0.09 g 

Na2SO4 for MnO/C-8.9, were dispersed into distilled water. The CF powders were 

added into the above precursor solutions and stirred for 1 h at room temperature. After 

soaked, the brown precipitates were filtered and washed and dried at 60oC for 12 h in 

an oven. In order to obtain MnO/C composite materials, the as-prepared precursor 

samples were placed inside an alumina boat in dimethylformamide and heated in a 

tube furnace to 600oC at a rate of 2oC min-1 and kept for 4 h under a flowing N2 

atmosphere.
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Figure S1: (HE)TEM images of the MnO2/CF precursor with different enlargements 

(a and b). The periodic lattice fringe with distinct interplanar distance of 0.24 nm 

corresponding to the (100) plane of MnO2 (JCPDS No. 42-1169) (b).
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Figure S2: (HR)TEM images of the MnO/C sample with different enlargements (a-d). 

The well-crystallized MnO nanoparticles with diameters ranging from 3 to 7 nm are 

evenly dispersed on the carbon matrix.
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Figure S3: (HR)TEM images of natural CF with different enlargements (a and b). 

The natural CF’s multiple layers could be observed from the images.
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Figure S4: XPS spectrum of the MnO2/CF precursor (a) and MnO/C sample (b-d). 

Two typical bands at 642.1 and 653.9 eV (a) is corresponding to the 2p3/2 and 2p1/2 

orbits of Mn4+ of MnO2, respectively. The two signals at 641.5 and 653.3 eV (b) may 

be attributed to Mn (II) 2p3/2 and 2p1/2 orbits, respectively, characteristic of MnO. The 

band at 532.4, 531.5 and 530.0 eV (c) can be assigned to the oxygen bond of C-OH 

phenol groups and/or C-O-C ether groups, Mn-O and C=O, respectively. A strong C 

1s peak at 284.9 eV (d) corresponds to the graphitic carbon. The weaker one at 286.1 

eV arising from the C-O, while the peak at about of 288.5 eV indicates the formation 

of C=O bonds.
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Figure S5: N2 adsorption-desorption isotherms of the pure carbon. The insert is the        

pore size distribution curve calculated from the adsorption branch by the DFT model.
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Figure S6: CV curves of the MnO/C sample at a scan rate of 1 mV s-1.
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Figure S7: Charge-discharge profiles of the electrode containing pure carbon for 

cycles with a current density of 0.1 A g-1. 
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Figure S8: Cycling performance (a) and rate property (b) of the MnO/C electrodes 

with different calcination temperatures.
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Figure S9: Rate performance of the electrodes containing MnO/C treated at 600oC 

with different MnO contents (1.9, 3.2, 5.3 and 8.9 wt.%).
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Figure S10: Specific capacity of the electrodes containing MnO/C treated at 600oC 

with different MnO contents (1.9, 3.2, 5.3 and 8.9 wt.%) at a current density of 0.1 A 

g-1.
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Figure S11: TGA curves of the electrodes containing MnO/C with different MnO 

contents (1.9, 3.2 and 8.9 wt.%)..
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Figure S12: The HRTEM images of the MnO/C-1.90 (a and c) and the MnO/C-8.85 

(b and d) samples.
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Figure S13: The relationship between Z′ and ω-1/2 at low frequency for the MnO/C-

5.3 after 3 cycles.
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Figure S14: The Nyquist plots of the MnO/C electrodes with various MnO contents.
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Table S1 Comparison of the MnO content, BET specific surface area and specific capacity of the MnO/C 

composite material by different methods.

Sample

MnO 

content  

[wt.%]

BET  specific 

surface area  

[m2g-1]

First discharge 

specific capacity                   

[mAh g-1]

Specific capacity 

after X cycles at 

Y mA g-1                                            

[mAh g-1]

Reference

MnO/C nanotube 96.8 40.0 1129 763 

(X=100,Y=100)

22

MnO/C nanowires 94.4 6.86 1196 801 

(X=200,Y=100)

62

MnO@1-D carbon 89.4 - 1249 763 

(X=100,Y=100)

31

MnO/C network 87.3 82.7 1456 1224 

(X=200,Y=200)

63

MnO/Graphene 82.6 50.3 890 2014 

(X=150,Y=200)

28

MnO/Microalgae 76.4 76.9 1021 702 

(X=50,Y=100)

34

MnO/C-N web 76.3 - 1272 650 

(X=100,Y=1000)

33

3D MnO/CNS 73.0 25.0 580 890 

(X=500,Y=100)

36

MnO/C nanoplate 60.0 - 1265 563 

(X=30,Y=200)

25

MnO/C nanocomposite 4.5 429.1 1620 952 

(X=100,Y=100)

Our work
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Table S2 Comparison of the resistance of electrolyte (Rs), the charge transfer resistance (Rct) and diffusion 

coefficient (D) of the MnO/C composite sample with various MnO contents.

Sample Rs [Ω] Rct [Ω] σw [Ω cm2 s-0.5] D [cm2 s-1]*

MnO/C-1.9 2.8 95 18.5 1.6×10-12

MnO/C-3.2 2.8 148 17.2 1.9×10-12

MnO/C-5.3 2.4 271 15.9 2.2×10-12

MnO/C-8.9 3.7 431 24.2 9.5×10-13

*D = 0.5(R·T/(A·F2·σw·C)2, where R (8.314 J K-1 mol-1) is the gas constant, T (298.5 K) is the Kelvin temperature, 

A (π×0.52 cm2) is the area of the electrode surface, F (96500 C mol-1) is Faraday constant, C (1 mol) is the molar 

concentration of Li+ ion, and σw is the Warburg coefficient. With Randles plotting, that is plotting Z′ with ω-1/2 (ω 

= 2πf) for a low-frequency Warburg response, the Warburg coefficient σw can be obtained by measuring the slope 

of such plots. The diffusion coefficient D of MnO/C-5.3 is the largest among the MnO/C-1.9, 3.2, 5.3 and 8.9 

samples.
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