Electronic Supplementary Information

Superlow load of nanosized MnO on the porous carbon matrix from wood fibre with superior lithium ion storage performance

Chunxiao Yang,^{*a*} Qiuming Gao,^{*a**} Weiqian Tian,^{*a*} Yanli Tan,^{*a*} Tao Zhang,^{*b*} Kai Yang^{*a*} and Lihua Zhu^{*a*}

Preparation of the MnO/C with different contents of MnO:

China fir (CF) was air dried with the water content lower than 20 wt.%. The CF xylem fibres were smashed and sieved to powder. 1.00 g of the CF powder was washed three times in deionized water to remove the dissolved impurity. To prepare MnO/C nanocomposite materials with different MnO contents, different amouts of KMnO₄ and Na₂SO₄, including 0.02 g KMnO₄ and 0.02 g Na₂SO₄ for MnO/C-1.9, 0.035 g KMnO₄ and 0.035 g Na₂SO₄ for MnO/C-3.2 and 0.09 g KMnO₄ and 0.09 g Na₂SO₄ for MnO/C-8.9, were dispersed into distilled water. The CF powders were added into the above precursor solutions and stirred for 1 h at room temperature. After soaked, the brown precipitates were filtered and washed and dried at 60°C for 12 h in an oven. In order to obtain MnO/C composite materials, the as-prepared precursor samples were placed inside an alumina boat in dimethylformamide and heated in a tube furnace to 600°C at a rate of 2°C min⁻¹ and kept for 4 h under a flowing N₂ atmosphere.

Figure S1: (HE)TEM images of the MnO_2/CF precursor with different enlargements (a and b). The periodic lattice fringe with distinct interplanar distance of 0.24 nm corresponding to the (100) plane of MnO_2 (JCPDS No. 42-1169) (b).

Figure S2: (HR)TEM images of the MnO/C sample with different enlargements (a-d). The well-crystallized MnO nanoparticles with diameters ranging from 3 to 7 nm are evenly dispersed on the carbon matrix.

Figure S3: (HR)TEM images of natural CF with different enlargements (a and b). The natural CF's multiple layers could be observed from the images.

Figure S4: XPS spectrum of the MnO₂/CF precursor (a) and MnO/C sample (b-d). Two typical bands at 642.1 and 653.9 eV (a) is corresponding to the $2p_{3/2}$ and $2p_{1/2}$ orbits of Mn⁴⁺ of MnO₂, respectively. The two signals at 641.5 and 653.3 eV (b) may be attributed to Mn (II) $2p_{3/2}$ and $2p_{1/2}$ orbits, respectively, characteristic of MnO. The band at 532.4, 531.5 and 530.0 eV (c) can be assigned to the oxygen bond of C-OH phenol groups and/or C-O-C ether groups, Mn-O and C=O, respectively. A strong C 1s peak at 284.9 eV (d) corresponds to the graphitic carbon. The weaker one at 286.1 eV arising from the C-O, while the peak at about of 288.5 eV indicates the formation of C=O bonds.

Figure S5: N_2 adsorption-desorption isotherms of the pure carbon. The insert is the pore size distribution curve calculated from the adsorption branch by the DFT model.

Figure S6: CV curves of the MnO/C sample at a scan rate of 1 mV s⁻¹.

Figure S7: Charge-discharge profiles of the electrode containing pure carbon for cycles with a current density of 0.1 A g^{-1} .

Figure S8: Cycling performance (a) and rate property (b) of the MnO/C electrodes with different calcination temperatures.

Figure S9: Rate performance of the electrodes containing MnO/C treated at 600°C with different MnO contents (1.9, 3.2, 5.3 and 8.9 wt.%).

Figure S10: Specific capacity of the electrodes containing MnO/C treated at 600°C with different MnO contents (1.9, 3.2, 5.3 and 8.9 wt.%) at a current density of 0.1 A g^{-1} .

Figure S11: TGA curves of the electrodes containing MnO/C with different MnO contents (1.9, 3.2 and 8.9 wt.%)..

Figure S12: The HRTEM images of the MnO/C-1.90 (a and c) and the MnO/C-8.85 (b and d) samples.

Figure S13: The relationship between Z' and $\omega^{-1/2}$ at low frequency for the MnO/C-5.3 after 3 cycles.

Figure S14: The Nyquist plots of the MnO/C electrodes with various MnO contents.

Sample	MnO content [wt.%]	BET specific surface area [m ² g ⁻¹]	First discharge specific capacity [mAh g ⁻¹]	Specific capacity after X cycles at Y mA g ⁻¹ [mAh g ⁻¹]	Reference
MnO/C nanotube	96.8	40.0	1129	763 (X=100,Y=100)	22
MnO/C nanowires	94.4	6.86	1196	801 (X=200,Y=100)	62
MnO@1-D carbon	89.4	-	1249	763 (X=100,Y=100)	31
MnO/C network	87.3	82.7	1456	1224 (X=200,Y=200)	63
MnO/Graphene	82.6	50.3	890	2014 (X=150,Y=200)	28
MnO/Microalgae	76.4	76.9	1021	702 (X=50,Y=100)	34
MnO/C-N web	76.3	-	1272	650 (X=100,Y=1000)	33
3D MnO/CNS	73.0	25.0	580	890 (X=500,Y=100)	36
MnO/C nanoplate	60.0	-	1265	563 (X=30,Y=200)	25
MnO/C nanocomposite	4.5	429.1	1620	952 (X=100,Y=100)	Our work

 Table S1 Comparison of the MnO content, BET specific surface area and specific capacity of the MnO/C composite material by different methods.

Sample	$R_{s}\left[\Omega ight]$	$R_{ct}\left[\Omega\right]$	$\sigma_w [\Omega \ cm^2 \ s^{\text{-}0.5}]$	$D [cm^2 s^{-1}]^*$
MnO/C-1.9	2.8	95	18.5	1.6×10 ⁻¹²
MnO/C-3.2	2.8	148	17.2	1.9×10 ⁻¹²
MnO/C-5.3	2.4	271	15.9	2.2×10 ⁻¹²
MnO/C-8.9	3.7	431	24.2	9.5×10 ⁻¹³

Table S2 Comparison of the resistance of electrolyte (R_s), the charge transfer resistance (R_{ct}) and diffusion coefficient (D) of the MnO/C composite sample with various MnO contents.

*D = $0.5(R \cdot T/(A \cdot F^2 \cdot \sigma_w \cdot C)^2)$, where R (8.314 J K⁻¹ mol⁻¹) is the gas constant, T (298.5 K) is the Kelvin temperature,

A ($\pi \times 0.5^2$ cm²) is the area of the electrode surface, F (96500 C mol⁻¹) is Faraday constant, C (1 mol) is the molar concentration of Li⁺ ion, and σ_w is the Warburg coefficient. With Randles plotting, that is plotting Z' with $\omega^{-1/2}$ ($\omega = 2\pi f$) for a low-frequency Warburg response, the Warburg coefficient σ_w can be obtained by measuring the slope of such plots. The diffusion coefficient D of MnO/C-5.3 is the largest among the MnO/C-1.9, 3.2, 5.3 and 8.9 samples.

Notes

^{*a*}Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China. ^{*b*}Beijing Centre for Physical and Chemical Analysis, Beijing 100089, P. R. China. Correspondence should be addressed to Q. Gao. E-mail: <u>qmgao@buaa.edu.cn</u>.Tel: +861082338212. Fax: +861082338212.