High nitrogen-content carbon nanosheets formed using a Schiff-

base reaction in a molten salt medium as efficiency anode

materials for lithium-ion batteries

Bin He, Wen-Cui Li, and An-Hui Lu*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China

* E-mail: anhuilu@dlut.edu.cn, Tel/Fax: +86-411-84986112

Table. S1 Comparison of the electrochemical performance of carbon-based anodes in literature.

Type of material	Reversible	Initial	Rate performance		DC
	(mAh/g)	(%)	[c]	[d]	Keierence
NC-2	605.3	63.1	430.0	396.1	This study
Carbon spheres	600.0	41.6	390	_	[1]
BCN nanosheets	424	51	300	_	[2]
Carbon nanospheres	_	41.7	370	280	[3]
Carbon nanosheets	_	38.6	_	350	[4]
Porous Carbon	400	47		178	[5]
Graphene paper	568	79.2	210	169	[6]
Graphene papers	175	40	268	_	[7]
Porous hard carbons	519.6	40.8	279.7	_	[8]

[a] The reversible capacity at the current density $\leq 100 \text{ mA g}^{-1}$. This study test at 100 mA g⁻¹.[b] The initial efficiency at the current density $\leq 100 \text{ mA g}^{-1}$. This study test at 100 mA g⁻¹.[c] The rate performance at the current density $\leq 500 \text{ mA g}^{-1}$. This study test at 500 mA g⁻¹.[d] The rate performance at the current density $\leq 1000 \text{ mA g}^{-1}$.

This study test at 1000 mA g⁻¹.

Figure S1. N₂ sorption isotherms for NC-1, NC-2, NC-3 and NC-4. The isotherms of NC-3 and NC-4 were vertically offset by 20 and 40 cm ${}^{3}g^{-1}$ STP, respectively.

Figure S2. The XPS of (a) NC-1, (b) NC-2, (c) NC-3 and (d) NC-4.

Figure S3. TG curve of the NC-2. It shows that about 7.5% salt residue is present in the sample NC-2 after intensive washing.

Figure S4. The cycle performance of commercial natural graphite at a current density of 3000 mA g^{-1} in the range of 0.005-3 V.

Figure S5. (a) Electrochemical impedance spectroscopy of NC-2 and NC-4, (b) closeup of Nyquist plots at a high frequency.

References

- [1] S. B. Yang, X. L. Feng, L. J. Zhi, Q. Cao, J. Maier, K. Müllen, Adv. Mater., 2010, 22, 838-842.
- [2] W. W. Lei, S. Qin, D. Liu, D. Portehault, Z. W. Liu, Y. Chen, Chem. Commun., 2013,49, 352-354.
- [3] K.Tang, R. J. White, X. K. Mu, M. M. Titirici, Peter A. V. Aken, J. Maier, ChemSusChem, 2012, 5, 400-403.
- [4] R. R.Song, H. H. Song, J. S. Zhou, X. H. Chen, B.Wu, H. Y. Yang, J. Mater. Chem. 2012, 22, 12369-12374.
- [5] G. P. Hao, F. Han, D. C. Guo, R. J. Fan, G. Xiong, W. C. Li, A. H. Lu, J. Phys. Chem. C, 2012, 116, 10303-10311.
- [6] F. Liu, S. Y. Song, D. F. Xue, H. J. Zhang, Adv. Mater., 2012, 24, 1089-1094.
- [7] Y. H. Hu, X. F. Li, D. S. Geng, M. Cai, R. Y. Li, X. L. Sun, Electrochimica Acta 2013, 91, 227-233.
- [8] Q. T. Zhang, H. X. Sun, X. M. Wang, Z. Q. Zhu, W. D. Liang, A. Li, S. H. Wen,
 W. Q. Deng, Energy Technol., 2013, 1, 721-725.