Free-Standing Cobalt Hydroxide Nanoplatelet Array Formed by Growth of Preferential-Orientation on Graphene Nanosheets as Anode Material for Lithium-Ion Batteries

Jisheng Zhou,^{a,b} Jingming Li,^a Kunhong Liu,^c Ling Lan,^c Huaihe Song,^{*,a} and Xiaohong Chen^a

a State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, P. R. China. Fax:+86 10-64434916; Tel: +86 10-64434916; E-mail: songhh@mail.buct.edu.cn

b Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Jiangsu, P. R. China.

c Petrochemical Research Institute, PetroChina Company Limited, Beijing, 100195, China

1. Supporting Data

The content of GNSs of the composites was determined by TGA and DSC technique carried out in the oxygen atmosphere, as shown in Fig. S1. A small endothermic peak on the DSC curve and a clear weight loss about 200 °C, assigning to the decomposition of $Co(OH)_2$ to CoO. The weight change from 200 °C to 400 °C owing to the complete combustion of graphene and the oxidation of CoO. In addition, there exists a endothermic peak at 940 °C because Co_3O_4 can be reduced into CoO nanoparticles over 900 °C. As a

result, the weight percentages of $Co(OH)_2$ and GNSs are approximately 70% and 30% calculated from the weight loss.

Figure S2 FTIR spectra of original GNSs and GNSs oxidized by HNO₃ at 80°C for 6 h.

Figure S3 (a) SEM image of hexagonal Co(OH)₂ nanoplates on GNSs-HNO₃, (b) schematic illustration of Co(OH)₂ nanoplates laid flat on GNSs-HNO₃, and (c) model of interaction between Co(OH)₂ nanoplates and –COOH groups on GNSs-HNO₃.

	Table S1 Data for Raman spectra			
	Peak Center/cm ⁻¹	Intensity	Peak Center/cm ⁻¹	Intensity
D peak	1364	60.1	1364	47.5
G peak	1602	58.8	1602	49.0
I_D/I_G	1.02		0.97	

Table S2 Content of various carbon atoms in the spectra of C1s peaks of Co(OH)₂ array/GNSs and GNSs

		Content/(%)	
Peak	Position	Co(OH) ₂ array/GNSs	GNSs
C-C/C=C	284.6	50.9	57.1
C-O	286.1	13.9	22.6
C=O	287.3	10.5	11.9
O-C=O	289.5	12.2	8.3
Co-C	283.1	12.5	

Figure S4. (a) XPS spectra of $Co(OH)_2$ array/GNSs and $Co(OH)_2$ /GNSs-HNO₃, and their (b) C1s, (c) $Co2p_{3/2}$, and (d) O1s spectra.

Figure S5. the cyclic performance of GNSs as anode material at 50 mAg⁻¹