Electronic Supplementary Information (ESI)

A new D-A-π-A type organic sensitizer based on substituted dihydroindolo [2, 3-b] carbazole and DPP unit with a bulky branched alkyl chain for highly efficient DSCs

Guojian Tian,^{*a*} Shengyun Cai,^{*a*} Xin Li,^{*b*} Hans Ågren,^{*b*} Qiaochun Wang,^{*a*} Jinhai Huang^{*a**} and Jianhua Su^{*a**}

^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, PR China. Fax: 862164252288; E-mail: <u>bbsjh@ecust.edu.cn</u>; <u>huangjh@ecust.edu.cn</u>.
^b Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH

Royal Institute of Technology, SE-10691 Stockholm, Sweden.

- 1. The frontier orbital plots of the HOMO and LUMO of T1-T2(Table 3);
- 2. Computational analysis(Table 4), (Fig. 4);
- **3.** Absorption curves of dyes **T1-T2** upon light irradiation of AM 1.5 solar light (30 min) with UV cutoff filter at 400 nm.
- 4. Normalized absorption and emission spectra of T1-T2 in both solvent systems.
- **5.** The absorption amounts of **T1-T2** in CHCl₃: EtOH (v/v 3:7) and CH₂Cl₂ were showed in **Table 5**.
- 6. The printout of elemental analysis of T1-T2.

T1		T2		
НОМО-4				
НОМО-2				
HOMO-1				
НОМО				
LUMO				
LUMO+1				
LUMO+2				

1. The frontier orbital plots of the HOMO and LUMO of **T1-T2.**

Table 3. Contour plots of frontier molecular orbitals of compounds T1 and T2.

2. Computational analysis

Compound	State	λ_{abs}	f	MO composition
T1	S_1	2.46 eV, 503 nm	1.631	H-2 -> L+0 (15%)
				H-1 -> L+0 (59%)
				H-1 -> L+1 (15%)
	S_2	3.19 eV, 388 nm	0.450	H-4 -> L+0 (46%)
				H-1 -> L+1 (30%)
	S_5	3.54 eV, 349 nm	1.145	H-2 -> L+0 (30%)
				H-2 -> L+1 (16%)
				H-1 -> L+2 (11%)
T2	S_1	2.56 eV, 485 nm	1.366	H-2 -> L+0 (15%)
				H-1 -> L+0 (58%)
				H-1 -> L+1 (18%)
	S_5	3.60 eV, 344 nm	1.810	H-2 -> L+0 (18%)
				H-2 -> L+1 (25%)
				H-1 -> L+0 (10%)

Fig. 4 Simulated absorption spectra of T1 and T2.

3. Absorption curves of dyes **T1-T2** upon light irradiation of AM 1.5 solar light (30 min) with UV cutoff filter at 400 nm.

Absorption curves of dyes **T1** upon light irradiation of AM 1.5 solar light (30 min) with UV cutoff filter at 400 nm.

Absorption curves of dyes **T2** upon light irradiation of AM 1.5 solar light (30 min) with UV cutoff filter at 400 nm.

4. Normalized absorption and emission spectra of T1-T2 in both solvent systems.

Normalized absorption and emission spectra of **T1-T2** in both solvent systems: a) was in CH2Cl2; b) was in CHCl₃: EtOH (v/v 3:7).

5. The absorption amounts of **T1-T2** in CHCl₃: EtOH (v/v 3:7) and CH₂Cl₂ were showed in Table 5.

T1-CHCl ₃ :EtOH	T2-CHCl ₃ :EtOH	T1-CH ₂ Cl ₂	T2-CH ₂ Cl ₂
2.32×10 ⁻⁸ (molcm ⁻²)	1.94×10 ⁻⁸ (molcm ⁻²)	2.68×10 ⁻⁸ (molcm ⁻²)	2.34×10 ⁻⁸ (molcm ⁻²)

Table 5. The absorption amounts of **T1-T2** in CHCl₃: EtOH (ν/ν 3:7) and CH₂Cl₂. The corresponding absorption spectra were below:

6. The printout of elemental analysis of **T1-T2**.

