Electronic Supplementary Information for

Al-doping to Synchronously Improve Conduction Band and Electron Lifetime for SnO₂ Photoanode to Enhance Dye-Sensitized Solar Cells Performances

Yandong Duan,^{†ab} Jiaxin Zheng,^{†a} Nianqing Fu,^{bc} Yanyan Fang,^b Tongchao Liu,^a Qian Zhang,^d Xiaowen Zhou,^b Yuan Lin,^{*ab} and Feng Pan^{*a}

^a School of Advanced Materials, Peking University, Peking University Shenzhen Graduate School, Shenzhen 518055, China. E-mail: linyuan@iccas.ac.cn; panfeng@pkusz.edu.cn; Tel: 86-0755-26033200.

^b Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^c Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

^d State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

† Y. D. Duan and J. X. Zheng contributed equally to this work.

 $\label{eq:Fig.S1} \textbf{Fig. S1} \ \text{IPCE} \ \text{of the fabricated DSSCs with } SnO_2, \\ Sn_{0.98}Al_{0.02}O_2, \\ \text{and } Sn_{0.98}Al_{0.02}O_2/\text{TiCl}_4 \ \text{as photoanodes}.$

Fig. S2 EIS spectra of the SnO_2 and the Al-doped SnO_2 DSSCs. The inset of EIS plots represents the equivalent circuit for EIS.

DSSCs based on SnO ₂ photoanode						
Ref.	Morphology or	Diameter	Synthetic method or	Film	η (%) (No surface	η (%)(After surface
	structure		manufacturer	thickness	treatment)	treatment) ^a
S1	SnO ₂	10-30 nm	NanoTek,	6 µm	2.3	
	nanoparticles		SNW15WT%-G02			
S2	SnO_2	3-5 nm	Alfa Aesar	10 µm	1.74	MgO/7.21
	nanoparticles					
S3	SnO_2 nanowire	20-200 nm	reactive vapor	25-30 μm	2.1	TiCl ₄ /4.1
			transport			
S4	SnO_2 hollow	1-2 μm	hydrothermal	10 µm	1.4	TiCl ₄ /5.65
	microspheres					
S5	coral-like SnO ₂	$300 \text{ nm}{\times}2 \mu\text{m}$	wet-chemical		1.04	
S6	SnO_2	15 nm	Alfa Aesar	4 µm	0.76	A1 O /2 7
	nanoparticles				0.70	Al ₂ O ₃ /5.7
S7	meso-SnO ₂	20 nm pores	hard template method	3 µm	1.1	TiCl ₄ /3.8
S 8	SnO_2 nanoflower	1 µm	hydrothermal	8-10 µm	3.00	TiCl ₄ /6.78

S9	SnO ₂ nanoparticles	15 nm	Alfa Aesar	5 µm	1.14	NiO/1.85
S10	SnO ₂ nanoparticles	15 nm	Alfa Aesar		1.7	CaCO ₃ /5.4
S 11	nanoporous SnO ₂	4 nm/>100 nm	Alfa Aesar /Aldrich	1-5µm	2.27	
S12	SnO ₂ nanocrystals	100 nm	microwave solvothermal	10-12µm	3.16	
	SnO_2					
S13	nanoarborous structure		electrodeposition	15µm	0.47	
S14	SnO ₂ nanopowder	<100 nm	Sigma-Aldrich	8µm	3.65	MgO/6.40
S15	SnO ₂ nanotube	110 nm	electrospinning	13µm	0.99	TiCl ₄ /5.11
S16	SnO ₂ nanowires	75±25 nm	electrospinning	19±2 µm	2.53	
S17	Zn-doped SnO ₂ nano-echinus	1 µm	solvothermal	11µm	4.15	
S18	SnO ₂ nanoparticles	100 nm	hydrothermal		0.85	4.15
S19	SnO ₂ hollow nanospheres	200 nm	hydrothermal		0.86	TiCl ₄ /6.02
S20	SnO2 octahedra	0.5 - 1.8 μm	sonochemical	13.2 µm		TiCl ₄ /6.8
S21	SnO ₂ nanosheet	thickness:4-6 nm	hydrothermal	4.1µm	0.23	TiCl ₄ /1.79
S22	mesoporous SnO ₂ agglomerates	200-600 nm	molten salt method	8 µm	3.05	TiCl ₄ /6.23
S23	N-SnO ₂ mesoporous microspheres	1.2-1.5 μm	one-pot solvothermal		2.3	
S24	Sb-doepd SnO ₂ aerogels		sol-gel	10µm	0.7	ALD TiO ₂ /3.5
S25	SnO ₂ hollow	500 nm-2 μm	hydrothermal	11µm		3.6
S26	SnO ₂ nanofibers	200 nm		8.7 μm		TiCl ₄ /4.63
S27	SnO ₂ nanoparticles	11.2-26.2 nm	microwave hydrothermal	13-15 μm	1.35	
S28	SnO ₂ nanoflower	1µm	hydrothermal		1.05	TiCl ₄ /5.6
Our work	Al-SnO ₂ nanocrystals	11.6-15.9 nm	hydrothermal	8 µm	3.56	TiCl ₄ /6.91
DSSCs based on SnO ₂ /TiO ₂ and SnO ₂ /ZnO composites						
S26	SnO ₂ /TiO ₂ composite (1:1)		mechanical blend	7.5 μm		TiCl ₄ /6.17

S29	SnO_2 nanorod@TiO ₂	150 nm×40 nm	flame spray pyrolysis	12 µm	3.95	TiCl ₄ /6.98
S30	SnO ₂ nanoparticles/ZnO nanotetrapods	6-10 nm/40×500 nm	hydrothermal/metal vapor transport- oxidation method	6 µm	6.31	
S31	SnO ₂ nanoparticle-ZnO nanorod	/103-291 nm×7μm	hydrothermal	3 μm +4.4 μm	2.62	
S32	SnO ₂ NRs-TiO ₂	50 nm×5 nm	solution method	150nm+1 0μm	8.61	
S33	SnO_2 hollow spheres-TiO ₂ nanosheets	500 nm	solvothermal reaction	8µm	8.2	

^aSurface treatment method and the corresponding photon-to-electron conversion efficiency.

References:

S1.	Y. Fukai, Y. Kondo, S. Mori and E. Suzuki, Electrochem. Commun., 2007, 9, 1439-1443.
S2.	M. K. I. Senevirathna, P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara and A. Konno, Sol. Energy
	Mater. Sol. Cells, 2007, 91, 544-547.
S3.	S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater., 2008, 18, 2411-2418.
S4.	J. F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. L. Cao, X. P. Ai and H. X. Yang, Adv. Mater., 2009, 21, 3663.
S5.	J. Y. Liu, T. Luo, T. S. Mouli, F. L. Meng, B. Sun, M. Q. Li and J. H. Liu, Chem. Commun., 2010, 46, 472-474.
S6.	C. Prasittichai and J. T. Hupp, J. Phys. Chem. Lett., 2010, 1, 1611-1615.
S7.	E. Ramasamy and J. Lee, J. Phys. Chem. C, 2010, 114, 22032-22037.
S8.	X. C. Dou, D. Sabba, N. Mathews, L. H. Wong, Y. M. Lam and S. Mhaisalkar, Chem. Mater., 2011, 23, 3938-3945.
S9.	M. H. Kim and Y. U. Kwon, J. Phys. Chem. C, 2011, 115, 23120-23125.
S10.	K. Perera, S. G. Anuradha, G. R. A. Kumara, M. L. Paranawitharana, R. M. G. Rajapakse and H. M. N. Bandara,
	Electrochim. Acta, 2011, 56, 4135-4138.
S11.	Z. Tebby, T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugere and L. Hirsch, ACS Appl. Mater. Interfaces,
	2011, 3 , 1485-1491.
S12.	A. Birkel, Y. G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M. J. Choi, Y. S. Kang, K. Char and W. Tremel, Energ.
	Environ. Sci., 2012, 5, 5392-5400.
S13.	Z. Chen, Y. F. Tian, S. J. Li, H. W. Zheng and W. F. Zhang, J. Alloy. Compd., 2012, 515, 57-62.
S14.	P. Docampo, P. Tiwana, N. Sakai, H. Miura, L. Herz, T. Murakami and H. J. Snaith, J. Phys. Chem. C, 2012, 116,
	22840-22846.
S15.	C. T. Gao, X. D. Li, B. G. Lu, L. L. Chen, Y. Q. Wang, F. Teng, J. T. Wang, Z. X. Zhang, X. J. Pan and E. Q. Xie,
	Nanoscale, 2012, 4, 3475-3481.
S16.	T. Krishnamoorthy, M. Z. Tang, A. Verma, A. S. Nair, D. Pliszka, S. G. Mhaisalkar and S. Ramakrishna, J. Mater.
	Chem., 2012, 22, 2166-2172.
S17.	Z. D. Li, Y. Zhou, T. Yu, J. G. Liu and Z. G. Zou, Crystengcomm, 2012, 14, 6462-6468.
S18.	H. C. Pang, H. B. Yang, C. X. Guo and C. M. Li, ACS Appl. Mater. Interfaces, 2012, 4, 6261-6265.
S19.	H. Wang, B. Li, J. Gao, M. Tang, H. B. Feng, J. H. Li and L. Guo, Crystengcomm, 2012, 14, 5177-5181.

- S20. Y. F. Wang, K. N. Li, C. L. Liang, Y. F. Hou, C. Y. Su and D. B. Kuang, J. Mater. Chem., 2012, 22, 21495-21501.
- S21. J. Xing, W. Q. Fang, Z. Li and H. G. Yang, Ind. Eng. Chem. Res., 2012, 51, 4247-4253.
- S22. P. N. Zhu, M. V. Reddy, Y. Z. Wu, S. J. Peng, S. Y. Yang, A. S. Nair, K. P. Loh, B. V. R. Chowdari and S. Ramakrishna, *Chem. Commun.*, 2012, 48, 10865-10867.
- S23. Z. D. Li, Y. Zhou, J. C. Song, T. Yu, J. G. Liu and Z. G. Zou, J. Mater. Chem. A, 2013, 1, 524-531.
- S24. J. P. Correa Baena and A. G. Agrios, J. Phys. Chem. C, 2014, 118, 17028-17035.
- S25. V. Ganapathy, E. H. Kong, Y. C. Park, H. M. Jang and S.-W. Rhee, Nanoscale, 2014, 6, 3296-3301.
- S26. R. Kasaudhan, H. Elbohy, S. Sigdel, H. Qiao, Q. Wei and Q. Qiao, *IEEE Electron. Device Lett.* 2014, 35, 578-580.
- S27. K. Manseki, T. Sugiura and T. Yoshida, New J. Chem., 2014, 38, 598-603.
- S28. H. Niu, S. Zhang, R. Wang, Z. Guo, X. Shang, W. Gan, S. Qin, L. Wan and J. Xu, J. Phys. Chem. C, 2014, 118, 3504-3513.
- S29. J. Huo, Y. Hu, H. Jiang, W. Huang and C. Li, J. Mater. Chem. A, 2014, 2, 8266-8272.
- S30. W. Chen, Y. C. Qiu, Y. C. Zhong, K. S. Wong and S. H. Yang, J. Phys. Chem. A, 2010, 114, 3127-3138.
- S31. N. K. Huu, D. Y. Son, I. H. Jang, C. R. Lee and N. G. Park, ACS Appl. Mater. Interfaces, 2013, 5, 1038-1043.
- S32. H. Song, K. H. Lee, H. Jeong, S. H. Um, G. S. Han, H. S. Jung and G. Y. Jung, *Nanoscale*, 2013, 5, 1188-1194.
- S33. S. H. Ahn, D. J. Kim, W. S. Chi and J. H. Kim, Adv. Funct. Mater., 2014, 24, 5037-5044