Supplementary information

Effects of LnF₃ on reversible and cyclic hydrogen sorption behaviors in NaBH₄: Electronegativity of Ln versus crystallographic factors

Lina Chong,^a Jianxin Zou,^{*ab} Xiaoqin Zeng^{ab} and Wenjiang Ding^{ab}

^aNational Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China. ^bShanghai Engineering Research Center of Magnesium Materials, Application & School of Materials

Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Broader context

Hydrogen is regarded as an ideal energy carrier for future sustainable society. However, the major obstacle to the development of hydrogen economy is the lack of efficient hydrogen storage carrier. Sodium borohydride, NaBH₄, as a promising candidate for hydrogen storage, has attracted much attention since the early 2000s due to its high hydrogen content (10.8 wt %), stable to air exposure and low cost. Unfortunately, its application is hindered by the high hydrogen desorption temperature and poor reversibility. This work demonstrates the dramatic improvements in de-/rehydrogenation thermodynamics and kinetics of NaBH₄ through the addition of lanthanide trifluorides as reagent. All the studied $3NaBH_4$ -LnF₃ (Ln = La, Ce, Pr, Nd, Sm, Gd, Ho, Er and Yb) composites show reversible hydrogen storage ability but different sorption behaviors. The best overall performances, including suitable thermodynamics, rapid kinetics and high capacity, are achieved in the $3NaBH_4$ -GdF₃ composite. In particular, the composite shows high cycling stability over 51 cycles with fast kinetics and can be still rehydrogenated under moderate conditions (182 °C, 1 MPa). The hydrogen sorption behaviors of $3NaBH_4$ -LnF₃ composites are correlated with the electronegativities of the Ln³⁺ cations, their electron configurations and the geometric factors of Ln-B phases. This work provides us with some criterions for optimizing the hydrogen storage performances of metal borohydrides based hydrogen storage systems.

Fig. S1. Temperature-programmed-desorption (TPD) profiles of (a) the $3NaBH_4$ -CeF₃, $3NaBH_4$ -SmF₃, $3NaBH_4$ -GdF₃ and $3NaBH_4$ -YbF₃ composites, (b) the $3NaBH_4$ -ErF₃ composite. Heating rate is 3 °C min⁻¹.

Fig. S2. (a) Kissinger plots of the dehydrogenation of the $3NaBH_4$ -CeF₃, $3NaBH_4$ -SmF₃, $3NaBH_4$ -GdF₃ and $3NaBH_4$ -YbF₃ composites. Data obtained from DSC measurements (Fig. 1). (b) DSC curves of $3NaBH_4$ -NdF₃ and $3NaBH_4$ -ErF₃ composites with heating rate being 3, 5, 10 K min⁻¹ under 1 bar argon atmosphere, respectively; (c) Kissinger plots corresponding to (b).

Sample	Heating rate / K	Peak temperature / °C	H_2 released / wt%
	min ⁻¹		
3NaBH ₄ -CeF ₃	3	418	3.33
	5	429	
	10	442	
$3NaBH_4$ - SmF_3	3	426	3.43
	5	439	
	10	453	
$3NaBH_4$ -GdF ₃	3	416	3.45
	5	426	
	10	436	
3NaBH ₄ -YbF ₃	3	449	3.01
	5	463	
	10	476	

Table S1. The peak temperatures corresponding to the four composites at different heating rates under 1 bar argon atmosphere.

Table S2. The onset dehydrogenation temperatures $-T_{on}$, temperatures for the maximum desorption rates $-T_{p}$ and dehydrogenation activation energies (*Ea*) of $3NaBH_4$ -LnF₃ (Ln = La, Ce, Pr, Nd, Sm, Gd, Ho, Er, Yb) composites obtained from TPD^a and DSC^b measurements, respectively.

Sample	$T_{\rm on}$ / °Ca	$T_{\rm p}$ / °Cb	<i>E</i> a / kJ mol ^{-1 b}	
3NaBH ₄ -LaF ₃	160	432	220.11	
3NaBH ₄ -CeF ₃	150	418	194.8	
3NaBH ₄ -PrF ₃	110	419	235.3 ²	
$3NaBH_4-NdF_3$	80	408	101.8	
$3NaBH_4$ - SmF_3	212	426	211.9	
$3NaBH_4$ - GdF_3	112	416	176.2	
$3NaBH_4$ -HoF $_3$	86	426	153.0 ³	
3NaBH ₄ -ErF ₃	82	413	103.3	
$3NaBH_4$ -YbF $_3$	156	449	257.2	

Fig. S3 FTIR patterns of the 3NaBH₄-CeF₃, 3NaBH₄-SmF₃, 3NaBH₄-GdF₃ and 3NaBH₄-YbF₃ composites in their corresponding as-prepared (a), dehydrogenated (b) and rehydrogenated (c) states.

Fig. S4. XRD patterns of 3NaBH₄-CeF₃ (a), 3NaBH₄-SmF₃ (b) and 3NaBH₄-YbF₃ (c) in: as-prepared (line A); dehydrogenated (line B); rehydrogenated (line C) states.

Fig. S4a proved that no new phases formed in the three composites after ball milling, and the characteristic peaks assigned to NaBH₄ were further demonstrated in FTIR spectra (Fig. S3a). After dehydrogenation, besides the newly formed NaF in the three composites, the phases present in the dehydrided 3NaBH₄-CeF₃, 3NaBH₄-SmF₃ and 3NaBH₄-YbF₃ composites are CeB₆, CeH₂ and Na₇Ce₆F₃₁; SmB₄ and Sm₃H₇; YbH₂ and YbF₂; respectively. Analyses by FTIR further corroborated the complete decomposition of NaBH₄ in the three dehydrogenated composites (Fig. S3b). Therefore, based on XRD, FTIR combined with calculation by using

HSC Chemistry program (Fig. S5), the dehydrogenation reactions of the three composites can be deduced as follows:

 $\begin{aligned} & 6NaBH_4 + 2CeF_3 = 6NaF + CeB_6 + CeH_2 + 11H_2 (g) & (S1); \\ & 36NaBH_4 + 12SmF_3 = 36NaF + 9SmB_4 + Sm_3H_7 + 68.5H_2 (g) & (S2); \\ & 12NaBH_4 + 4YbF_3 = 12NaF + 3YbB_4 + YbH_2 + 23H_2 (g) & (S3). \end{aligned}$

According to reactions S1-S3, the theoretical hydrogen release contents of $3NaBH_4$ -CeF₃, $3NaBH_4$ -SmF₃ and $3NaBH_4$ -YbF₃ composites are 3.54, 3.58 and 3.31 wt%, respectively, in a good agreement with the results determined by DSC and TPD measurements. Hence, the formations of $Na_7Ce_6F_{31}$ and YbF_2 are probably attribute to the side reactions between LnF₃ (Ln = Ce, and Yb) and a small amount of impurity introduced during sample preparation, since Ce³⁺ and Yb³⁺ have the tendency to be in +4 and +2 states, respectively, which are determined by their special electron configurations.⁴

After hydrogen absorption (Fig. S4(c)), the reappearance of peaks corresponding NaBH₄ was observed in the rehydrogenated 3NaBH₄-CeF₃, 3NaBH₄-SmF₃ and 3NaBH₄-YbF₃ composites, which proved the reversibilities of those composites. FTIR results further clarified the regeneration of NaBH₄ (Fig. S3(c)). Fig. S4c also confirmed the weakened diffraction peaks of NaF in the rehydrogenated 3NaBH₄-CeF₃, 3NaBH₄-SmF₃ and 3NaBH₄-YbF₃ composites. In addition, besides that the diffraction peaks corresponding to YbH₂ become weak in the rehydrogenated 3NaBH₄-YbF₃, no Ln-B or Ln-H phases can be identified in other two rehydrogenated composites. In the case of 3NaBH₄-SmF₃ composite, apart from the newly formed SmF₃, NaSmF₄ was also detected. Therefore, the rehydrogenation pathway in the 3NaBH₄-SmF₃ composite can be proposed as follows:

$$36\text{NaF} + 9\text{SmB}_4 + \text{Sm}_3\text{H}_7 + 68.5\text{H}_2 \text{ (g)} = 36\text{NaBH}_4 + 12\text{SmF}_3 \text{ (4)},$$

together with a side reaction:
NaF + SmF_3 = NaSmF_4

(5).

However, no CeF₃ or YbF₃ phases are detected in the rehydrogenated $3NaBH_4$ -CeF₃ and $3NaBH_4$ -YbF₃ composites. Since HSC Chemistry program can provide reliable thermodynamic parameters of a chemical reaction as a function of temperature,⁵ it is therefore used to calculate the Gibbs free energy of the rehydrogenation reaction in the $3NaBH_4$ -CeF₃ composite. NaF, CeB₆ and CeH₂ can react with H₂ to form NaBH₄ according to the following formulas:

$$6NaF + CeB_{6} + CeH_{2} + 11H_{2} (g) = 6NaBH_{4} + 2CeF_{3}$$
(6),
With $\Delta G = -241.575 \text{ kJ mol}^{-1} \text{ at } 25 \text{ °C};$
$$12NaF + 2CeB_{6} + CeH_{2} + 23H_{2} (g) = 12NaBH_{4} + 3CeF_{4}$$
(7),
With $\Delta G = 550.778 \text{ kJ mol}^{-1} \text{ at } 25 \text{ °C}.$

From the thermodynamic point of view, reaction (6) is more favorable at 25°C. The absence of CeF₃ or CeF₄ in the rehydrogenated products is probably due to the side reaction between Ce fluoride and NaF. Similarly, for the $3NaBH_4$ -YbF₃ composite, the hydrogen absorption reaction may be proposed as: 12NaF + 3YbB₄ + YbH₂ + 23H₂ (g) = 12NaBH₄ + 4YbF₃ (8). Equilibrium compositions for 3NaBH₄-CeF₃ decomposition.

Fig. S5 Equilibrium compositions diagram for the decomposition of 3NaBH₄-CeF₃ composite, as a function of temperature. The calculation was done using HSC5 software.⁵

The graph shows that no CeF₄ is formed during dehydrogenation reaction between NaBH₄ and CeF₃. Note that approximately 5.496 mole H₂ (~3.54 wt% for the composite, ~10.8 wt% for NaBH₄) is released, meanwhile, the mole ratio of NaBH₄:CeF₃:H₂:NaF:CeB₆:CeH₂ is 3:1:5.496:2.987:0.498:0.498, in line with our experimental result, which evidences the validity of reaction S1. Because of the formation of Na₇Ce₆F₃₁ resulting from the combination between NaF and CeF₄, there should be a side reaction between CeF₃ and a small amount of impurity introduced during sample preparation to yield CeF₄, consequently leads to the formation of Na₇Ce₆F₃₁. On the other hand, this result reveals that Na₇Ce₆F₃₁ is only the by-product.

Fig. S6 Schematic representations of (a): (I) LnB_6 (Ln = La, Ce, Pr and Nd) (100) surface, (II) LnB_4 (Ln = Sm, Gd, Ho and Yb) (010) surface, (III) crystal structure of cubic NaBH₄ (Fm-3m); (b): LnB_6 (111) surface; (c): crystal structure of (I) TiB₂, MgB₂ and AlB₂; (II) CaB₆. Red ball = La, Ce, Pr and Nd; purple ball = Sm, Gd, Ho and Yb; brown ball = B; green ball = Na; dark blue ball = Ti, Mg and Al; azure ball = Ca.

Metal boride	Recombined borohydrides	Temperature / °C	Pressure / MPa	Time / h	Reference
TiB ₂	$LiBH_4$	350	10	12	6
MgB_2	NaBH ₄	400	35	24	7
MgB_2	$LiBH_4$	390	6	20	8
AlB_2	$LiBH_4$	350	15	50	9
CaB ₆ (TiCl ₃	$LiBH_4$	400	10	20	10
catalyst)					
Ln-B	NaBH ₄	~ 400	~ 3	~ 6	1, 2, 3,11 and this work

Table S3. The conditions needed for the transformation from some metal-borides to metal borohydrides.

Table S4 Comparisons of the electronegativity of Ln^{3+} , as well as the dehydrogenation enthalpies (ΔH_d) / rehydrogenation enthalpies (ΔH_f) of 3NaBH₄-LnF₃ composites for the 1st de-/rehydrogenation. Corresponding data were obtained from Ref. 12, DSC^a and PCT^b measurements, unless otherwise noted.

Sample	χ _p of Ln	$\Delta H_d / kJ mol^{-1}$	$\Delta H_f / kJ mol^{-1}$	
	cation ¹²	1 H ₂ a	H ₂ ^b	
3NaBH ₄ -LaF ₃	1.327(+3)	50.1	-31 .8 ¹	
3NaBH ₄ -CeF ₃	1.348(+3)	46.3		
	1.608(+4)			
$3NaBH_4$ -PrF ₃	1.374(+3)	49.6	- 18.4 ²	
	1.646(+4)			
3NaBH ₄ -NdF ₃	1.382(+3)	50.5	-13.211	
$3NaBH_4$ - SmF_3	1.410(+3)	47.6		
3NaBH ₄ -GdF ₃	1.386(+3)	53.1	-15.6	
3NaBH ₄ -HoF ₃	1.433(+3)	47.3	-27.12^{3}	
3NaBH ₄ -ErF ₃	1.438(+3)	51.4	-31.7	
3NaBH ₄ -YbF ₃	1.479(+3)	53.8		
	1.237(+2)			

Fig. S7 (a) van't Hoff plots for $3NaBH_4$ -GdF₃ composite. Data obtained from PCT measurements of $3NaBH_4$ -GdF₃ composite (Fig. 3-down). (b) PCT curves of the $3NaBH_4$ -ErF₃ composite measured at 350, 380 and 410 °C. (c) van't Hoff diagrams corresponding to (b).

The hysteresis between absorption and desorption isotherms are also observed in the $3NaBH_4$ -LnF₃ (Ln = Ce, Sm, Gd, Er, Yb) composites, which may arise from different reaction ways during de-/rehydrogenation, as reported in the study of $3NaBH_4$ -NdF₃ system.¹¹

Fig. S8 Relationships between the dehydrogenation(up)/rehydrogenation (down) enthalpies $(\Delta H_d/\Delta H_f)$ and the Ln³⁺ cations, respectively.

Composite	Operable cyclic	Rehydrogenation	Degree of	
	temperature by PCT / °C	equilibrium pressure / MPa	reversibility / %	
$3NaBH_4$ -LaF $_3$	385	2.10	92.7 ¹	
3NaBH ₄ -CeF ₃	410	unachievable	42.0	
$3NaBH_4$ - PrF_3	380	1.923	82.2^{2}	
$3NaBH_4-NdF_3$	360	1.463	84.311	
$3NaBH_4$ - SmF_3	410	unachievable	52.8	
$3NaBH_4$ -GdF $_3$	350	1.17	96.3	
3NaBH ₄ -HoF ₃	400	2.62	65.7 ³	
$3NaBH_4$ -ErF $_3$	410	0.902	79.4	
3NaBH ₄ -YbF ₃	410	unachievable	43.4	

Table S5. Hydrogen storage properties of 3NaBH₄-LnF₃ composites obtained from PCT measurements.

Cycle	Hydrogenation	Approx.	wt%	Cycle	Hydrogenation	Approx.	wt%
No.	conditions / °C	hydrogenation	H_{2}	No.	conditions / °C	hydrogenation	H_{2}
	/MPa	time / h			/MPa	time / h	
1-6	400/3	2	3.50	29	400/4	3.6	3.48
7	400/3	2.1	3.48	30	400/3	3	2.45
8	350/3	4.4	2.86	31	400/2	5.8	1.78
9	400/3	8.8	3.46	32	400/3	2	2.45
10	400/3	8.3	3.49	33	400/3	2	2.25
11	310/3	9.2	2.32	34	400/3	4.7	2.62
12	230/3	7.7	1.82	35	400/3	2	2.10
13	400/3	2	2.76	36	400/1	10	1.16
14	400/3	2	2.70	37	400/4	3	3.48
15	400/3	3.4	3.47	38	400/3	5.1	2.79
16	400/3	2	2.63	39	400/3	2	2.13
17	186/3	6.2	1.63	40	400/3	4.7	2.69
18	400/3	2	1.97	41	400/3	2	2.28
19	400/3	2	1.97	42	244/2	5.6	1.40
20	400/3	7.3	3.22	43	400/4	5.3	3.13
21	400/3	2	2.05	44	182/1	7.1	0.68
22	400/3	2.1	2.09	45	400/4	8	2.99
23	400/3	2	2.04	46	400/4	3	2.69
24	400/3	2	2.01	47	400/3	3.9	2.29
25	400/3	2	2.11	48	400/3	5.1	2.52
26	400/1	3	0.82	49	400/3	5.1	2.50
27	400/2	5.8	1.74	50	400/3	2	1.96
28	400/3	3	2.47	51	400/2	3.5	1.46

Table S6. Data obtained from the cycling tests on the 3NaBH₄-GdF₃ composite.

Before the isothermal dehydrogenation measurement, the rehydrogenated sample was firstly cooled to ambient temperature and then pressurized with 5 MPa hydrogen. After the temperature was quickly raised to and kept at the desired one, the sample chamber was quickly evacuated.

Fig. S9 Rehydrogenation curves of the $3NaBH_4$ -GdF₃ composite during cyclic tests under different conditions: (a) 3 MPa-400 °C, inset figure shows the dehydrogenation cyclic curves at 400 °C for the 1st, 2nd and 3rd cycles; (b) 1, 2, 3 and 4 MPa hydrogen pressures at 400 °C; (c) 3 MPa hydrogen pressure at different temperatures; (c) 4 MPa-400 °C, 2 MPa-244 °C and 1 MPa-182 °C.

Inset of Fig. S9(a) displays a fast dehydrogenation kinetics of 3NaBH₄-GdF₃ composite. For example, the time needed for 3NaBH₄-GdF₃ composite to release 3.0 wt% of hydrogen is only 9 min in the 1st cycle. Interestingly, a drastic improvement on desorption kinetics upon cycling is achieved by showing the shifts of the dehydrogenation curves to the shorter time with increasing cycle numbers. For instance, to release 3.0 wt% of hydrogen, the time needed in the 2nd and 3rd cycles is reduced to 2 min, respectively. In addition, the total hydrogen contents released from the 3NaBH₄-GdF₃ composite are all about 3.50 wt% for the 1st, 2nd and 3rd cycles, which corresponds well with the absorbed ones in the first 3 rehydrogenation cycles, confirming a complete dehydrogenation for each cycle.

References

- L. N. Chong, J. X. Zou, X. Q. Zeng and W. J. Ding, J. Mater. Chem. A, 2014, 2, 8557-8570. 1
- 2
- L. N. Chong, J. X. Zou, X. Q. Zeng and W. J. Ding, *J. Mater. Chem. A*, 2013, **1** 13510 13523. L. N. Chong, J. X. Zou, X. Q. Zeng and W. J. Ding, *Int. J. Hydrogen Energy*, 2014, **39**, 14275-14281. 3
- K. y. Li and D. f. Xue, J. Phys. Chem. A, 2006, 110, 11332-11337.
 A. Roine, Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermodynamical Database and Flowsheet Simulation, Version 5.1, 02103-ORC-T, Outokumpu Research Oy, Finland, 2002.
 Y. H. Guo, X. B. Yu, L. Gao, G. L. Xia, Z. P. Guo and H. K. Liu, *Energy Environ. Sci.*, 2010, 3, 465-470.
 G. Barkhordarian, T. Klassen, M. Dornheim and R. Bormann, *J. Alloys Compd.*, 2007, 440, L18-L21.
- 6
- 7
- 8 R. Gosalawit-Utke, J. M. Bellosta von Colbe, M. Dornheim, T. R. Jensen, Y. Cerenius, C. B. Minella, M. Peschke and R. Bormann, *J. Phys. Chem. C*, 2010, **114**, 10291-10296. J. Yang, A. Sudik and C. Wolverton, *J. Phys. Chem. C*, 2007, **111**, 19134-19140.
- 9
- 10 S. -A. Jin, Y. -S. Lee, J. -H. Shim and Y. W. Cho, J. Phys. Chem. C, 2008, 112, 9520-9524.
- 11 L. N. Chong, J. X. Zou, X. Q. Zeng and W. J. Ding, J. Mater. Chem. A, 2013, 1, 3983-3991.
 12 K. y. Li and D. f. Xue, J. Phys. Chem. A, 2006, 110, 11332-11337.