Electronic supplementary information

A green and scalable synthesis of highly stable Ca-based sorbents for CO₂ capture

Feng Yan, Jianguo Jiang, Ming Zhao, Sicong Tian, Kaimin Li, Tianran Li

Samples	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	K ₂ O	TiO ₂	MgO	Trace
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
FA	2.80	53.96	24.04	11.32	3.70	1.37	1.10	1.71
CaO ^a	97.90	0.93	0.50	0.45	0.03	0.07	0.01	0.11
CaO-FA ^b	89.88	5.98	2.19	1.13	0.13	0.16	0.18	0.35

Table S1 Chemical compositions of the sorbents

^a Including the sorbents of "CaO-0h" and "CaO-2h"; ^b including the sorbents of "CaO-FA-0h", "CaO-FA-2h", "CaO-FA-6h", and "CaO-FA-12h".

Samples	Melting temperature	T _T ^a	Comples	Melting temperature	T _T
	(°C)	(°C)	Samples	(°C)	(°C)
CaO ¹	2613	1170	CaCO ₃ ²	1320 ^b	524
Al ₂ O ₃ ¹	2054	891	Ca ₂ Al ₂ SiO ₇ ³	1593	797
MgO ¹	2825	1276	Ca ₁₂ Al ₁₄ O ₃₃ ⁴	1722	725
SiO ₂ ¹	1722	725	Al _{4.8} Si _{1.2} O _{9.6}	1910	955
TiO ₂ ¹	1843	785	Ca ₂ SiO ₄ ⁵	2130	929
Y ₂ O ₃ ¹	2439	1083	CaTiO ₃ ⁵	1975	851
ZrO ₂ ¹	2710	1219	CaZrO ₃ ⁵	2345	1036

Table S2 Tammann temperatures (T_T) of the typical minerals

^a $T_T \approx 0.5 T_{\text{melting}}$, referring to the temperatures at which sintering occurs. ^b Determined at 100 MPa.

1 CRC handbook of chemistry and physics 95th edition internet version 2014-2015, http://www.hbcpnetbase.com/.

2 P. J. Wyllie and O. F. Tuttle, J. Petrol., 1960, 1, 1-46.

3 G. Gruener, K. Dembinski, A. Bouvier, J.P. Loup and P. Odier, Eur. Phys. J.-Appl. Phys., 1998, 4, 101-106.

4 J. E. Medvedeva, E. N. Teasley, M. D. Hoffman, Phys. Rev. B, 2007, 76, 155107.

5 M. Zhao, J. Shi, X. Zhong, S. C. Tian, J. Blamey, J. G. Jiang, P. S. Fennell, *Energy Environ. Sci.*, 2014, 7, 3291-3295.

Fig. S1 Particle size distribution curves of samples: (a) "CaO-0h"; (b) "FA-0h"; (c) "FA-2h"; (d) "CaO-FA-2h".

Fig. S2 N₂ physisorption isotherms and pore volume distributions (inset) of the fly ash.

Fig. S3 SEM images of the fly ash: (a) ×5,000; (b) ×20,000.

Fig. S4 XRD patterns of the fly ash.

Fig. S5 N₂ physisorption isotherms of "CaO-2h" before the 1st, 5th, and 30th cycle, separately.

Fig. S6 N₂ physisorption isotherms of "CaO-FA-2h" before the 1st, 5th, and 30th cycle, separately.

Fig. S7 (a) TEM image and electron diffraction pattern of "CaO-2h"; (b) HRTEM image and electron diffraction pattern of the selected area in (a).

Fig. S8 EDX spectrum averaged on the region of "CaO-FA-2h" (Fig. 2-(d)). A quantitative mapping analysis yields a wt % of 63.76% for Ca, 4.09% for Si, 1.04% for Al and 31.11% for O.

Fig. S9 XRD patterns of "CaO-FA-2h" before the 1st, 5th, and 30th cycle, separately.