Supplementary Materials

for

Electrospun Cr-doped Bi₄Ti₃O₁₂/Bi₂Ti₂O₇ Heterostructures Fibers with Enhanced Visible-Light Photocatalytic Properties

Hongfei Shi,^{ab} Huaqiao Tan,^{ab}* Wan-bin Zhu, ^c Zaicheng Sun,^a* Yuejia Ma ^a and Enbo Wang^b*

^a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nanhu Road, Changchun 130033, People's Republic of China.

^b Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, People's Republic of China.

[°] State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

*sunzc@ciomp.ac.cn(ZS)

Fig. S1. The nitrogen adsorption-desorption isotherms curves of $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$, BTO-0.02, BTO-0.04 and BTO-0.08 (abs = adsorption, des = desorption).

Fig. S2 The pore size distribution curves of $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$, BTO-0.02, BTO-0.04 and BTO-0.08.

Fig. S3 The band-gap evaluation from the plots of $(\alpha h \upsilon)^2$ vs. h υ of BTO samples.

Fig. S4. UV-vis diffuse reflectance spectra of the $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$ fibers, BTO-0.12 and BTO-0.24.

Fig. S5. The XRD of the $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$ fibers, BTO-0.12 and BTO-0.24.

Fig. S6. Degradation profiles of MO, where C is the concentration of the MO, C_0 is the initial concentration of MO.

Fig. S7. The Cr 2p XPS spectra of BTO-0.08.

Fig. S8 Degradation of MO using BTO-0.08 as catalyst under visible light irradiation.

Fig. S9 Kinetic linear simulation curves of MO photocatalytic degradation with the $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$ and BTO fibers.

Fig. S10 Cycling runs of photocatalytic degradation of MO in aqueous BTO-0.08 dispersions under visible light irradiation, where C is the concentration of the MO, C_0 is the initial concentration of MO.

Fig. S11 Transient photocurrent response of $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$ and BTO samples in 0.5 M Na₂SO₄ aqueous solutions under visible-light irradiation at 0 V vs. Hg/Hg₂Cl₂

Fig. S12. The electrochemical impedance spectroscopy (EIS) of $Bi_4Ti_3O_{12}/Bi_2Ti_2O_7$, BTO-0.04 and BTO-0.08. Electrochemical impedance spectroscopy (EIS) was performed using a Model CS350 electrochemistry station (CH Instruments, Wuhan CorrTest Instrument Corporation, PRC) in 0.1 M LiClO₄ ethanol solution at +0.25 V from 0.1 Hz to 100 KHz . The EIS data were fitted using ZSimpWin data analysis software.