Supporting Information

Self-assembly of modified Rhodamine-6G with tri-block copolymer: Unusual vesicles formation, pH sensing and dye release properties

L. Praveen, Sukdeb Saha, Suresh K. Jewrajka*, Amitava Das*

Central Salt & Marine Chemicals Research Institute (CSIR), Bhavnagar, 364002, Gujarat, India Fax: (+91) 278-2567562 E-mail: <u>amitava@csmcri.org</u>; <u>skjewrajka@csmcri.org</u>

Contents

1	Synthesis of rhodamine-6G derivatives	<i>S1</i>
2	¹ H NMR spectrum of octadecyl rhodamine-6G	<i>S2</i>
3	¹³ C NMR spectrum octadecyl rhodamine-6G	<i>S3</i>
4	ESI-Mass spectrum of octadecyl rhodamine-6G	<i>S4</i>
5	¹ H NMR spectrum of propyl rhodamine-6G	<i>S5</i>
6	¹³ C NMR propyl rhodamine-6G spectrum	<i>S6</i>
7	ESI-Mass spectrum of propyl rhodamine-6G	<i>S7</i>
8	DLS of PDMA-b-PMMA-b-PDMA polymer in water-ethanol solvent system at a pH 7 and pH 5	<u>58</u>
9	Average hydrodynamic diameter of vesicles at different pH	<i>S9</i>
10	SEM picture of vesicles upon exposure to different pH	<i>S10</i>
11	Emission spectra of pyrene $(2 \times 10^{-6} \text{ M})$ in the vesicle after dialysis	<i>S11</i>

12	UV-Vis response of octadecyl rhodamine-6G (8 x 10^{-5} M) in aqueous media (ethanol-water, 1:4, v/v) at a pH 6	<i>S12</i>		
13	UV-Vis response of vesicle in aqueous media (ethanol-water, 1:4, v/v) at a pH 6			
14	UV-Vis spectra of propyl rhodamine-6G (5 x 10^{-4} M) in ethanol upon addition of HCl			
15	Emission spectra of the vesicle in aqueous media at a pH 6 for 40 h			
16	Emission response of the octadecyl rhodamine-6G in aqueous media (ethanol-water, 1:4, v/v) at a pH 6 for a period 3h			
17	Plot of I/I _{max} of propyl rhodamine -6G in different pH			
18	AFM image of octadecyl rhodamine-6G (5 x 10^{-5} M) in aqueous media (ethanol-water, 1:4, v/v)			
19	AFM image of the propyl rhodamine-6G in aqueous media (ethanol-water, $1:4, v/v$)	S19		
20	AFM image of the PDMA-b-PMMA-b-PDMA polymer $(0.4g/L)$ with propyl rhodamine-6G (5 x 10 ⁻⁵ M) in water-ethanol (4:1, v/v) solvent system			
21	DLS result of PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with rhodamine-6G (0.12 g/L) in water-ethanol (4:1, v/v) solvent system.	S21		
22	Standard curve for the calculation of octadecyl rhodamine-6G loading in the vesicle			
23	Standard curve for the dye release experiment	<i>S23</i>		
24	Plot for the release of total ring opened octadecyl rhodamine-6G released from the vesicle after dialysis in suitable pH, followed by the addition of 2N HCl for 30 min. in water-ethanol (4:1, v/v) solvent system	<i>S24</i>		
25	AFM image of the PDMA-b-PMMA-b-PDMA polymer $(0.4g/L)$ with octadecyl rhodamine-6G (0.12 g/L) in water-ethanol $(4:1, \text{ v/v})$ solvent system when drop casted over mica substrate	S25		
26	DLS result of PDMA-b-PMMA-b-PDMA polymer with octadecyl rhodamine-6G in water-ethanol solvent system at a $pH = 3$	S26		
27	DLS result of PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with octadecyl rhodamine-6G (0.12 g/L) in water-ethanol (1:4, v/v) solvent system with continuous removal of organic solvent through dialysis.	S27		
28	The size distribution of the octadecyl rhodamine-6G (5.0×10^{-5} M) in water- ethanol (4:1, v/v) media.	S28		
29	The size distribution of the PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with propyl rhodamine-6G (5.0×10^{-5} M) in water-ethanol ($4:1, v/v$) media.	S29		
30	Synthesis and characterization of PDMA-b-PMMA-b-PDMA polymer			

Experimental

Scheme S1: Synthesis of rhodamine-6G derivatives.

Figure S2: ¹H NMR spectrum of octadecyl rhodamine-6G (**R**) in d_6 -DMSO.

Figure S3: ¹³C NMR spectrum of octadecyl rhodamine-6G (**R**) in CDCl₃.

Figure S4: Mass spectrum of octadecyl rhodamine-6G (R).

Figure S5: ¹H NMR spectrum of propyl rhodamine-6G (\mathbf{R}_1) in CDCl₃.

Figure S6: ¹³C NMR spectrum of propyl rhodamine-6G (\mathbf{R}_1) in DMSO-d₆.

Figure S7: Mass spectrum of propyl rhodamine-6G (R₁).

Figure S8: DLS result of PDMA-b-PMMA-b-PDMA polymer in water-ethanol solvent system at a pH = 5 & 7.

Table S9: Average hydrodynamic diameter of vesicles at different pH.

Entry	At pH 6	At pH 7	At pH 8
Av. hydrodynamic diameter (nm)	92	85	55

Figure S10: SEM picture of vesicles upon exposure to different pH over a period of 24 h; Figure a: pH 3, b: pH 4 and c: pH 5.

Figure S11: Emission spectra of pyrene $(2.0 \times 10^{-6} \text{ M})$ in the vesicle after dialysis.

Figure S12: UV-Vis response of octadecyl rhodamine-6G (8.0 x 10^{-5} M) in aqueous media (ethanol-water, 1:4, v/v) at a pH 6.

Figure S13: UV-Vis response of vesicle in aqueous media (ethanol-water, 1:4, v/v) at a pH 6.

Figure S14: UV-Vis spectra of propyl rhodamine-6G ($5.0 \times 10^{-4} \text{ M}$) in ethanol upon addition of 10 equiv of HCl (in water).

Figure S15: Emission spectra of the vesicle solution in aqueous media (ethanol-water, 1:4, v/v) at a pH 6 for a period 40 h.

Figure S16: Emission response of the octadecyl rhodamine-6G (8.0×10^{-5} M) in aqueous media (ethanol-water, 1:4, v/v) at a pH 6 for a period 3 h.

Figure S17: Plot of I/I_{max} of propyl rhodamine-6G in different pH

Figure S18: AFM image of octadecyl rhodamine-6G (**R**) (5.0 x 10^{-5} M) in aqueous media (ethanol-water, 1:4, v/v).

Figure S19: AFM image of propyl rhodamine-6G (5.0 x 10^{-5} M) in aqueous media (ethanol-water, 1:4, v/v) shows featureless aggregates.

Figure S20: AFM image of the PDMA-b-PMMA-b-PDMA polymer (0.4g/L) with propyl rhodamine-6G (5.0 x 10⁻⁵ M) in water-ethanol (4:1, v/v) solvent system.

Figure S21: DLS result of PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with rhodamine-6G (0.12 g/L) in water-ethanol (4:1, v/v) solvent system. Thus, DLS result shows formation of micelles.

Figure S22: Standard curve of octadecyl rhodamine-6G in aqueous media (ethanol-water, 1:4, v/v) system (absorbance).

Figure S23: Standard curve of release of octadecyl rhodamine-6G in aqueous media (ethanol-water, 1:4, v/v) system at a pH < 2 for 24 h.

Figure S24: Plot for the release of total ring opened octadecyl rhodamine-6G released from the vesicle after dialysis in suitable pH, followed by the addition of 2N HCl for 30 min. in water-ethanol (4:1, v/v) solvent system.

Figure S25: AFM image of the PDMA-b-PMMA-b-PDMA polymer (0.4g/L) with octadecyl rhodamine-6G (0.12 g/L) in water-ethanol (4:1, v/v) solvent system when drop casted over mica substrate.

Figure S 26: DLS result of PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with octadecyl rhodamine-6G (0.12 g/L) in water-ethanol (4:1, v/v) solvent system at a pH = 3. Thus, DLS result shows rapture of the vesicle and generation of miceller structures with an average diameter of > 35 nm at this low pH.

Figure S27: DLS result of PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with octadecyl rhodamine-6G (0.12 g/L) in water-ethanol (1:4, v/v) solvent system at a pH = 7 with continuous removal of organic solvent by dialysis for 24 h.

Figure S 28: The size distribution of the octadecyl rhodamine-6G (5.0×10^{-5} M) in water-ethanol (4:1, v/v) media.

Figure S 29: The size distribution of the PDMA-b-PMMA-b-PDMA polymer (0.4 g/L) with propyl rhodamine-6G (5.0×10^{-5} M) in water-ethanol (4:1, v/v) media.

Synthesis of PDMA-b-PMMA-b-PDMA copolymers.

 $PDMA_{11k}$ -PMMA_{6k}-PDMA_{11k} (subscripts indicate the M_n) copolymer was synthesized by the reported procedure.¹ A typical example for the synthesis of PDMA_{11k}-PMMA_{6k}-PDMA_{11k} copolymer with M_n 28000 g/mol and a polydispersity index (PDI) 1.20 is as follows. Briefly, a difunctional Cl-PMMA-Cl was prepared at 35 °C using CuCl/bpy as the catalyst and 1,2bis(bromoisobutyryloxy)ethane as the initiator with the following recipe: MMA (7 g, 0.07 mol), acetone (4.2 mL), CuCl (0.1 g, 0.00094 mol), bpy (0.3 g, 0.0019 mol) and 1,2bis(bromoisobutyryloxy)ethane (0.34 g, 0.00094 mol). After 12 h the conversion was 80% and the M_n and PDI values were 6300 g/mol and 1.30 respectively. In the next step the dried and purified Cl-PMMA-Cl macroinitiator was used to polymerize DMA. The recipe was as follows: DMA (4.66 g, 0.03 mol), acetone (4.2 mL), CuCl (0.016 g, 0.00016 mol), bpy (0.05 g, 0.00032 mol) and Cl-PMMA-Cl (1.1 g, 0.00017 mol) (M_n = 6300 and PDI = 1.30). After 12 h, the conversion was 78%. The polymer was purified by passing its solution through a silica gel column using toluene as an eluent. The copper free solution was concentrated by rotary evaporator and precipitated in petroleum ether. The polymer was re-dissolved in acetone and reprecipitated with petroleum ether again. The precipitated mass was dried in air for 12 h and then in vacuum oven at 60 °C for 48 h. The Mn and PDI values were determined to be 28,400 g/mol and 1.2 respectively.

The M_n s and PDIs of the copolymer were determined by GPC. The GPC was performed at room-temperature using a Waters model 2695 separation module coupled with Waters 2414 refractive index detector and Waters Ultra-Styragel columns of 10000, 1000, 500 Å pore size which were preceded by a prefilter. HPLC grade THF was used as the eluent at a flow rate of 1 mL/min. Before injection into the GPC system the polymer solutions were filtered through a pre-filter-filter combination system compatible with organic solvents. Polystyrene standards were used for calibration.

Quantum Yield calculation

Fluorescence quantum yield of **R**, **R**₁ and **R**_v was determined in Ethanol-H₂O (1:4, v/v) using optically matching solutions of Rhodamine-6G ($\Phi_F = 0.94$ in ethanol)² as standard at an excitation wavelength of 500 nm and quantum yield was calculated using equation 1.

$$\Phi_{\rm F} = \Phi_{\rm r} \left({\rm A}_{\rm r} {\rm F}_{\rm s} / {\rm A}_{\rm s} {\rm F}_{\rm r} \right) \left({\eta_{\rm s}}^2 / {\eta_{\rm r}}^2 \right)$$
 ------1

where As and Ar are the absorbances of the sample and reference solutions respectively at the same excitation wavelength, Fs and Fr are the corresponding relative integrated fluorescence intensities and η is the refractive index of the solvent used.

- 1. U. Chatterjee, S. K. Jewrajka and B. M. Mandal, Polymer., 2005, 46, 10699.
- 2. (a) M. Fischer and J. George, *Chem. Phys. Lett.*, 1996, **260**, 115; (b) D. Wu, W. Huang, Z. Lin, C. Duan, C. He, S. Wu and D. Wang, *Inorg. Chem.*, 2008, **47**, 7190.