Supporting Information

Ionic Liquid Modified Magnetic Microspheres for Isolation of Heme Protein with High Binding Capacity

Yun Wei*, Yan Li, Ailin Tian, Yuntian Fan, Xiong Wang

 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China. Tel & Fax: 0086 10 64442928. E-mail: <u>weiyun@mail.buct.edu.cn</u>

Supplementary Figures

Figure S1. TEM images of Fe₃O₄@SiO₂ microspheres.

Figure S2. a) The FT-IR spectra of $Fe_3O_4@SiO_2$ and $Fe_3O_4@SiO_2@IL$. b) The FT-IR spectra of $Fe_3O_4@SiO_2$ and $Fe_3O_4@SiO_2@IL$ from 1300 cm⁻¹ to 2000 cm⁻¹. Small differences in spectra were observed in relation to the wavenumbers and intensities of the absorption bands for $Fe_3O_4@SiO_2$ and $Fe_3O_4@SiO_2@IL$. In spectrum of $Fe_3O_4@SiO_2@IL$ functionalized silica, one important band at 1540 cm⁻¹ is attributed to the characteristic frequencies of cationic imidazole group.

The result of recycle experiment was shown in Fig.S3. The experiment condition is same as experiment **3.3.1** in this paper, pH 6.8. Compared to the actual bioseparations, sample concentration is very high. But the adsorption efficiencies maintained at more than 80% after 8 recycled use. So our resin would have a relatively long lifetime in the practical application.

resin	Separation	capacity	size	company
	time			
HIS-Select nickel magnetic beads ¹	30 min	>10 mg/g	20-75µm	Sigma
Glutathione High Capacity	30min	≥12 mg/g	50µm	Sigma
Magnetic Agarose Beads ²				
MagPrep [®] P-25 Protein A Particles ³		> 220 µg human IgG/mg	25nm	Novagen
Ni-NTA magnetic agarose beads ⁴	30min	0.25-1 mg/g	20-70µm	QIAGEN
IL resin (This work)	15min	2.15 g Hb per g resin	~270nm	

Table S1. The separation efficiency of the IL resin compare to some commercial resins.

protein	Size	molecular weight	maximum	
	(dimensions)		adsorption number	
Hb	$5.3 \times 5.4 \times 6.5$ nm ⁵	64500	3.33×10 ⁻⁵ mol/g	
Lys	$3.0 \times 3.0 \times 4.5$ nm 6	14388	1.39×10 ⁻⁶ mol/g	

Table S2. The comparison of size, molecular weight and maximum adsorption number between Hb and Lys.

Seen from the table 1 below, the gap of size is not conspicuous relative to molecular weight. But the magnitude of adsorption number is different, which proved the selective affinities for hemoglobin.

References

- 1 http://www.sigmaaldrich.com/catalog/product/sigma/h9914?lang=en®ion=CA
- 2 http://www.sigmaaldrich.com/catalog/product/sigma/g0924?lang=en®ion=CA.
- 3 http://www.merckmillipore.com/china/life-science-research/magprep-p-25-protein-a-p articles/EMD_BIO-72189/english/p_uDGb.s1O2tQAAAEjYRp9.zLX?WFSimpleSearch_Na meOrID=+beads&BackButtonText=search+results
- 4 http://www.qiagen.com/Products/Protein/Purification/QIAexpressProteinPurificationSys tem/Ni-NTAMagneticAgaroseBeads.aspx?r=609
- 5 (a) H. H. Weetall, *Appl. Biochem. Biotechnol*, 1993, 41, 157;
 (b) I. Gill, *Chem. Mater*, 2001, 13, 3404.
- 6 J. R. Lu, T. J. Su, B. J. Howlin, J. Phys. Chem. B, 1999, 103, 5903.