Electronic supplementary information (ESI)

Preparation of Fe₃O₄@C magnetic microspheres

The Fe₃O₄@C magnetic microspheres were synthesized by hydrothermal reaction of glucose on Fe₃O₄ magnetic microspheres as per the described method with slight modification.¹ In briefly, added 100 mg of dried Fe₃O₄ microspheres into a 50 mL of 0.1 M HNO₃ and ultrasonicated for 15-20 min followed by washing with deionized water and separated by magnetic decantation. The acid treated magnetic microspheres were dispersed in 50 mL of aqueous 0.5 M glucose solution via vigorous stirring for 20 min. The resultant Fe₃O₄ microspheres-glucose suspension was sealed in a Teflon-lined stainless-steel autoclave and heated to and maintained at 180 °C for 4 h and then allowed to cool to room temperature. The obtained black colored suspended Fe₃O₄@C magnetic microspheres were washed several times with water and ethanol, respectively, and separated by magnetic decantation. Finally, the Fe₃O₄@C magnetic microspheres were oven dried at 80 °C for 6-8 h.

Fig. S1. The energy-dispersive X-ray analysis (EDAX) of Fe₃O₄@ZrO₂ magnetic microspheres

Synthesis of cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)

The CDMPC was prepared as per the reported method.² The cellulose powder (1 g) was dried in a vacuum oven at 100 °C for 4 h to remove the chemically absorbed water. Dried cellulose was refluxed in 25 mL of dry pyridine for 12 h. After cooling the mixture to room temperature, an excess of 3,5-dimethylphenyl isocyanate was added dropwise to the cellulose suspension under constant magnetic stirring and the reaction was continued at 100 °C for 24 h under reflux. The final product, dark amber viscous, mostly homogeneous liquid, was cooled to room temperature. The product was isolated as the methanol-insoluble fraction and purified by reprecipitation from an acetone solution. The white solid was vacuum filtered, washed several times with methanol, and dried in air, then under vacuum to a constant weight. ¹H-NMR (300 MHz) spectrum of CDMPC expressed the following characteristic absorptions: 8.0-8.5 (H of amide groups), 2.7-5.1 (H of cellulose ring and methylene in position 6), 2-2.3 ppm (H of CH₃aryl groups).

FT-IR Spectra of Fe₃O₄ @C and Fe₃O₄ @ZrO₂

The FT-IR spectrum of Fe₃O₄@C (Fig. 2) shows the characteristic absorption band of Fe–O bond at 576 cm⁻¹. Apart from that new absorption peaks at 1700 and 1618 cm⁻¹ which are attributed to C=O and C=C, respectively, proving the carbonization of glucose on hydrothermal reaction. The IR spectral frequencies between 1400-1200 corresponds to hydrophilic groups of – C–O stretching and –OH bending vibrations, suggesting their high adsorption. These hydrophilic groups can enhance the affinity between the microspheres and the prehydrolyzed zirconium isopropoxide. The FT-IR spectrum of the as-synthesized Fe₃O₄@ZrO₂ microspheres (Fig. 2) shows a new absorption band corresponding to the characteristic absorption of zirconia at ~634 cm⁻¹ was observed, which further confirmed the successful formation of Fe₃O₄@ZrO₂ magnetic microspheres.

Fig. S2. FT-IR spectra of Fe₃O₄ @C and Fe₃O₄ @ZrO₂

Fig. S3. TGA curves of Fe₃O₄ @ZrO₂ and CZMMs.

Fig. S4. (a) Nitrogen adsorption/desorption isotherm and (b) pore size distribution of CZMMs

Structures of chiral drugs

	Measured optical rotation ^{a,b}				
pH	Racemic	Supernatant of racemic ibuprofen			
	ibuprofen	collected after isolated from CZMMs			
2.0	-0.004	-13.14			
4.5	0.002	-14.20			
7.5	0.002	-15.12			
10.0	0.000	-15.45			

Table 3	S1. Separa	ation of ib	uprofen	enantiomers of	on CZMM	s at different	pHs
---------	------------	-------------	---------	----------------	---------	----------------	-----

^a $[\alpha]^{22}_{D}$ deg cm² g (3 mg mL⁻¹ in 0.025 M ammonium acetate buffer)

^b Average of three determinations

References

- Y. Li, T. H. Leng, H. Q. Lin, C. H. Deng, X. Q. Xu, N. Yao, P. Y. Yang and X. M. Zhang, J. Proteome Res., 2007, 6, 4498–4510.
- 2. Y. Okamoto, M. Kawashima and K. Hatada, J. Chromatogr. 1986, 363, 173-186.