Electronic Supplementary Information (ESI)

One-step synthesis of biocompatible magnetite/silk fibroin core shell nanoparticles

Weiqin Sheng, ‡^a Jing Liu, ‡^b Shanshan Liu,^a Qiang Lu, ^{*a} David L Kaplan,^{a c} Hesun Zhu^d

^aNational Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology,

Soochow University, Suzhou 215123, People's Republic of China. Tel: (+86)-512-67061649; E-mail: Lvqiang78@suda.edu.cn

^bRegenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian

116011, People's Republic of China

^cDepartment of Biomedical Engineering, Tufts University, Medford, MA 02155, USA

^dResearch Center of Materials Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China

‡ These authors contributed equally to this work.

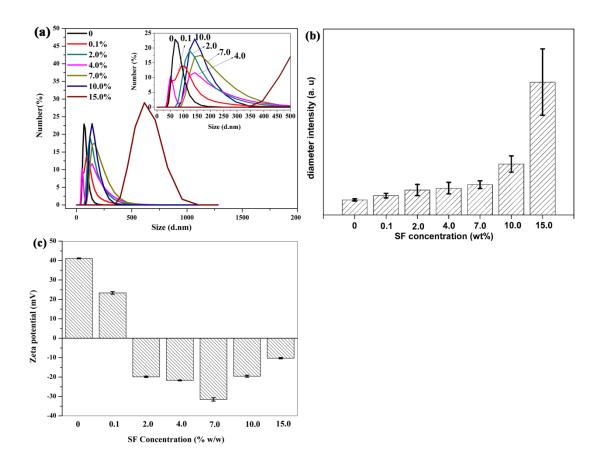


Figure S1 Size distribution(a), Normalised diameter's histogram (b) and zeta potential (c) of Fe_3O_4/SF nanospheres prepared under different silk fibroin contents.

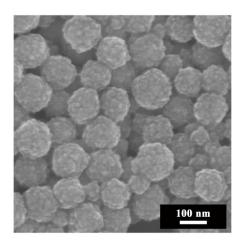
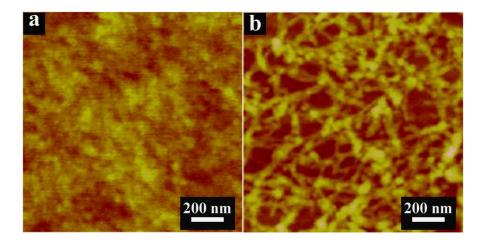



Figure S2 High-magnification SEM image of the prepared Fe_3O_4/SF nanospheres when the concentration of silk fibroin was 7 wt%

Figure S3 the AFM images of the silk fibroin: (a) before addition of ethylene glycol (EG), and (b) after addition of EG. Silk fibroin changed from nanoparticles to nanofibers after the addition of ethylene glycol.

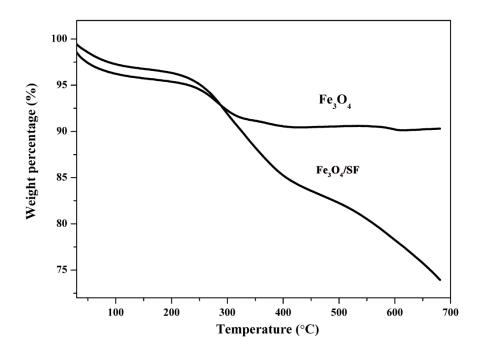


Figure S4 TGA curves of the obtained Fe₃O₄/SF microspheres and pure Fe₃O₄.

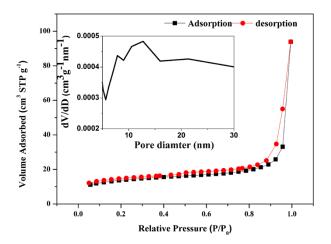


Figure S5 Nitrogen adsorption-desorption isotherm curve of the obtained Fe_3O_4/SF microspheres. The concentration of SF that added in the reaction system is 7%.