Supporting information for

Facile Synthesis of a Class of Aminochromeneaniliniumion Conjugated Far-Red to Near-Infrared Fluorescent Dyes for Bioimaging

Kaibo Zheng, ${ }^{\text {b }}$ Weiying Lin, ${ }^{\text {a, }, ~, ~ * ~ W e i m i n ~ H u a n g ~}{ }^{\mathrm{b}}$, Xiaoyu Guan, ${ }^{\mathrm{b}}$Dan Cheng, ${ }^{\text {b }}$ and Jian-Yong Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, P.R. China.
${ }^{\text {b }}$ State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
E-mail: weiyinglin2013@163.com
Page

1. Calculation of fluorescence quantum yield. S2
2. Figures S1-S2 S2
3. Figures S3-S4 S3
4. Figures S5-S6 S4
5. Figures $\mathrm{S} 7-\mathrm{S} 8$ S5
6. Table S1-3 S6-S7
7. Figures S9 S7
8. References S7
9. Figures S10-17 S8-S11

Determination of the fluorescence quantum yield

Fluorescence quantum yields for ACA-1~4 were determined by using ICG ($\Phi_{f}=$ 0.13 in DMSO) as a fluorescence standard. ${ }^{1}$ The quantum yield was calculated using the following equation:

$$
\Phi_{\mathrm{F}(X)}=\Phi_{\mathrm{F}(\mathrm{~S})}\left(A_{S} F_{X} / A_{X} F_{S}\right)\left(n_{X} / n_{S}\right)^{2}
$$

Where Φ_{F} is the fluorescence quantum yield, A is the absorbance at the excitation wavelength, F is the area under the corrected emission curve, and n is the refractive index of the solvents used. Subscripts S and X refer to the standard and to the unknown, respectively.

Fig. S1. A) Absorption spectra of the dyes; B) Emission spectra of the dyes; ACA-1 $(■), \mathbf{A C A}-2(\bullet), \mathbf{A C A}-3(\mathbf{)})$ and ACA-4 ($\boldsymbol{\nabla})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S2. A) Absorption spectra of the dyes; B) Emission spectra of the dyes; ACA-1 $(■)$, ACA-2 (•), ACA-3 ($\mathbf{\Delta}$), and ACA-4 ($\boldsymbol{\nabla}$) in pH 7.4, 25 mM PBS buffer (containing $0.5 \mathrm{mg} / \mathrm{mL}$ BSA).

Fig. S3 pH -dependence of the fluorescence intensity of the dyes: A (ACA-1), B (ACA-2), C (ACA-3), and D (ACA-4).

Fig. S4. Photostability of ACA-1 (■), ACA-2 (•), ACA-3 ($\mathbf{\Delta}$), and ACA-4 ($\mathbf{\nabla}$) in $\mathrm{pH} 7.4,25 \mathrm{mM}$ PBS buffer (containing $0.5 \mathrm{mg} / \mathrm{mL}$ BSA). The samples were continuously irradiated by UV light (365 nm) (A) and 500W Xe lamp (B).

Fig. S5 Photostability of ACA-1 (■), ACA-2 (•), ACA-3 ($\mathbf{\Delta}$), and ACA-4 ($\boldsymbol{\nabla}$) in pH 7.4, 25 mM PBS buffer. The samples were continuously irradiated by UV light (365 nm).

Fig. S6 Fluorescence spectra of a $5 \mu \mathrm{M}$ solution of ACA-1~4 before and after reaction with various the representative oxidizing and reducing reagents for $30 \mathrm{~min}, \mathrm{~A}$ (ACA-1), B (ACA-2), C (ACA-3) and D (ACA-4).

Fig. S7 Cytotoxicity assays of ACA-1~4 at different concentrations (a: $0 \mu \mathrm{M}$; b: 2 $\mu \mathrm{M} ; \mathrm{c}: 5 \mu \mathrm{M} ; \mathrm{d}: 10 \mu \mathrm{M}$; e: $20 \mu \mathrm{M})$ for HeLa cells.

Fig. S8 DFT optimized structure of ACA-2~4. In the ball-and-stick representation, carbon, nitrogen, and oxygen atoms are colored in gray, blue, and red, respectively. H atoms were omitted for clarity.

Table S1. Representative C-C (N or O) Bond Lengths (in pm) of ACA-2 determined by DFT Calculations.

C-C Bond	Bond Lengths (in pm)	C-C Bond	Bond Lengths (in pm)	C-C/N/O Bond	Bond Lengths (in pm)
C2-C3	144.2	C12-C13	141.8	C2-N1	136.3
C3-C4	137.3	C13-C14	137.5	C6-O8	142.4
C4-C5	141.8	C14-C15	142.9	C12-O8	135.4
C5-C6	141.9	C15-C16	141.8	C18-N21	136.5
C6-C7	138.7	C16-C17	137.9	C22-N21	147.1
C2-C7	142.5	C17-C18	142.7		
C5-C10	141.6	C18-C19	143.1		
C9-C10	149.4	C19-C20	137.7		
C10-C11	139.0	C15-C20	141.9		
C11-C12	139.9				

Table S2. Representative C-C (N or O) Bond Lengths (in pm) of ACA-3 determined by DFT Calculations.

C-C Bond	Bond Lengths (in pm)	C-C Bond	Bond Lengths (in pm)	C-C/N/O Bond	Bond Lengths (in pm)
C2-C3	143.8	C11-C12	140.0	C2-N1	136.5
C3-C4	137.3	C12-C13	143.4	C6-O8	137.1
C4-C5	141.8	C13-C14	141.8	C12-O8	135.2
C5-C6	141.7	C14-C15	137.6	C16-N19	136.4
C6-C7	138.1	C15-C16	143.0	C20-N19	148.1
C2-C7	142.0	C16-C17	143.0		
C5-C10	142.0	C17-C18	137.8		
C9-C10	149.1	C13-C18	141.7		
C10-C11	139.1				

Table S3. Representative C-C (N or O) Bond Lengths (in pm) of ACA-4 Determined by DFT Calculations.

C-C Bond	Bond Lengths (in pm)	C-C Bond	Bond Lengths (in pm)	C-C/N/O Bond	Bond Lengths (in pm)
C2-C3	143.6	C12-C13	141.5	C2-N1	136.4
C3-C4	137.3	C13-C14	137.7	C6-O8	137.1
C4-C5	141.8	C14-C15	142.7	C12-O8	135.5
C5-C6	141.8	C15-C16	141.8	C18-N21	136.6
C6-C7	138.2	C16-C17	137.9	C22-N21	147.1
C2-C7	141.9	C17-C18	142.8		
C5-C10	142.2	C18-C19	143.2		
C9-C10	149.2	C19-C20	137.5		
C10-C11	138.8	C15-C20	142.1		
C11-C12	140.2				

Figure S9. Time-lapsed (5, 10, 20 and 30 min) in vivo imaging of the mice with the dyes ACA-2 (A) and ACA-4 (C).

Reference:

1. (a) R. C. Benson, H. A. Kues. J. Chem. Eng. Data., 1977, 22, 379-383; (b) D.

Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka, Y. Urano, T. Nagano, J. Am.
Chem. Soc., 2010, 132, 2795-2801.

Fig. S10. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound ACA-1.

Fig. S11. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound ACA-1.

Fig. S12. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound ACA-2.

Fig. S13. ${ }^{13}$ C NMR spectrum of the compound ACA-2.

Fig.S14. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound ACA-3.

Fig.S15. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound ACA-3.

Fig. S16. ${ }^{1} \mathrm{H}$ NMR spectrum of the compound ACA-4.

Fig. S17. ${ }^{13} \mathrm{C}$ NMR spectrum of the compound ACA-4.

