
Selective growth of pure magnetite thin films and/or nanowires grown *in situ* at a low temperature by pulsed laser deposition

Supplementary Information

Jong-Gu Yun, ¹ Young-Mi Lee, ² Won-Jae Lee, ³ Chang-Soo Kim, ⁴ and Soon-Gil Yoon ¹,*

Fig. S1 SEM tilted images (at low magnification) exhibiting the nanowires grown during the cooling over the films grown at (a) 610, (b) 620 and (c) 630 °C. Each insets showed the tilted images observed at high magnification.

¹Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon, Korea

²Brain Korea 21 (BK21) and Department of Materials Engineering, Chungnam University, Daejeon, 305-764, Republic of Korea

³Department of Nano Technology, Dong-Eui University, Busan, 614-714, Korea

⁴Korea Research Institute of Standards and Science, Daejeon, 305-600, Korea

^{*}Corresponding author: sgyoon@cnu.ac.kr

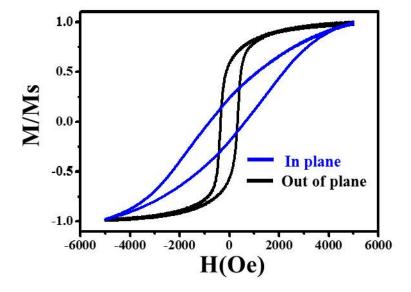



Fig. S2 Fe 2p XPS measurement of the 110 nm-thick films.

Fig. S3 Magnetization-magnetic field (*M-H*) curves of the films grown at 300 °C.