Supplementary Information; Figures and Table

Table S1. Comparison of the NO_2 sensing capability of the Ag-functionalized SnO_2 microrods in this study to those of the previous reports.

Fig. S1 Microstructures of Ag nanoparticles synthesized with different AgNO₃ concentrations in γ -ray radiolysis at 10 kGy·h⁻¹ for 2 h: (a) 2×10^{-2} , (b) 2×10^{-3} and (c) 2×10^{-4} mM AgNO₃ in a mixed solvent of deionized water (90 vol%) and 2-propanol (10 vol%).

Fig. S2 (a) Size and (b) formation density of Ag nanoparticles as a function of the precursor concentration in γ -ray radiolysis at 10 kGy·h⁻¹ for 2 h.

Fig. S3 (a) X-ray photoelectron spectroscopy spectrum of the Ag-functionalized SnO_2 microrods after the heat treatment. (b) A high resolution spectrum for the Ag $3d_{5/2}$ signal.

Fig. S4 Response curves of the sensors fabricated with bare and Ag-functionalized SnO_2 microrods for 1 ppm NO₂ at 300 °C during the repeated cycles.

Fig. S5 Low- and high-resolution TEM images taken from single SnO_2 microrod. The inset in the upper figure is an electron diffraction pattern taken from the microrod.

Fig. S6 Comparison of the response of the sensor fabricated with the Ag-functionalized SnO_2 microrods to those of previously reported sensors that were fabricated with different types of SnO_2 materials.

Fig. S7 Response curves of the Ag-functionalized SnO_2 microrods for 100 ppm CO, C_6H_6 and C_7H_8 at 200 °C.

Fig. S8 Energy band diagrams of the junctions (a) p-Ag₂O and n-SnO₂ and (b) Ag and n-SnO₂.

Materials	NO ₂ concentration (ppm)	Operating temperature (°C)	Sensor response	Reference
Ag-functionalized SnO ₂ microrod	0.1	200	780	This work
Co ₃ O ₄ -decorated ZnO nanowire	5	200	45.4	1
ZnO nanoparticles	40	290	264	2
Porous ZnO nanoflakes	0.1	175	5.6	3
Nano-tubular TiO ₂	50	300	5	4
WO ₃ nanorods	10	200	209	5

Table S1. Comparison of the NO_2 sensing capability of the Ag-functionalized SnO_2 microrods in this study to those of the previous reports.

Reference

1 C. W. Na, H.-S. Woo, I.-D. Kim and J.-H. Lee, Chem. Commun., 2011, 47, 5148.

2 S. Bai, J. Hu, D. Li, R. Luo, A. Chen and C. C. Liu, J. Mater. Chem., 2011, 21, 12288.

3 M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C, 2011, 115, 12763.

4 Y. Gönüllü, G. C. M. Rodríguez, B. Saruhan, M. Ürgen, Sens. Actuators B: Chem., 2012, 169, 151.

5 S. Bai, K. Zhang, R. Luo, D. Li, A. Chen and C. C. Liu, J. Mater. Chem., 2012, 22, 12643.

Fig. S1 Microstructures of Ag nanoparticles synthesized with different AgNO₃ concentrations in γ -ray radiolysis at 10 kGy·h⁻¹ for 2 h: (a) 2 × 10⁻², (b) 2 × 10⁻³ and (c) 2 × 10⁻⁴ mM AgNO₃ in a mixed solvent of deionized water (90 vol%) and 2-propanol (10 vol%).

Fig. S2 (a) Size and (b) formation density of Ag nanoparticles as a function of the precursor concentration in γ -ray radiolysis at 10 kGy·h⁻¹ for 2 h.

Fig. S3 (a) X-ray photoelectron spectroscopy spectrum of the Ag-functionalized SnO_2 microrods after the heat treatment. (b) A high resolution spectrum for the Ag $3d_{5/2}$ signal.

Fig. S4 Response curves of the sensors fabricated with bare and Ag-functionalized SnO_2 microrods for 1 ppm NO₂ at 300 °C during the repeated cycles.

Fig. S5 Low- and high-resolution TEM images taken from single SnO_2 microrod. The inset in the upper figure is an electron diffraction pattern taken from the nanorod.

Fig. S6 Comparison of the response of the sensor fabricated with the Ag-functionalized SnO_2 microrods to those of previously reported sensors that were fabricated with different types of SnO_2 materials.

Fig. S7 Response curves of the Ag-functionalized SnO₂ nanorods for 100 ppm CO, C_6H_6 and C_7H_8 at 200 °C.

Fig. S8 Energy band diagrams of the junctions (a) p-Ag₂O and n-SnO₂ and (b) Ag and n-SnO₂.