Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is (c) The Royal Society of Chemistry 2013

Electronic Supplementary Information

Lanthanide-Doping Route to Aspect-Ratio-Controlled KSc₂F₇ Nanocrystals for Upconversion, Downconversion and Magnetism

Yujie Ding,^{ab} Xiaoxia Zhang,^a Hao Zhu^a and Jun-Jie Zhu*^a

Fig. S1 FT-IR spectrum of the pure KSc_2F_7 NCs. As one can see, two peaks at 2926 cm⁻¹ and 2854 cm⁻¹ can be assigned to the asymmetric (v_{as}) and symmetric (v_s) stretching vibration of methylene (CH₂), respectively. In addition, the =C-H stretching mode is located at 3007 cm⁻¹. The weak absorption peak at 1737 cm⁻¹ is attributed to C=O vibration frequency from the carboxyl of oleic acid. The peaks at 1551 cm⁻¹ and 1460 cm⁻¹ belong to the asymmetric (v_{as}) and symmetric (v_s) stretching vibration of the carboxylic group (-COOH), respectively. It can be concluded that the oleic acid is coordinated to the surface of KSc_2F_7 NCs.

Fig. S2 EDS of (a) KSc₂F₇: 10% Yb³⁺, (b) KSc₂F₇: 10% Sm³⁺, (c) KSc₂F₇: 10% Ce³⁺

Fig. S3 STEM image of an individual nanorod of sample KSc_2F_7 : 10% Yb³⁺ NCs (a) and the EDX element mapping of potassium (b), scandium (c), fluorine (d) and ytterbium (e).

Sample	Initial doped [RE ³⁺] (at.%)	Doped [RE ³⁺] in NCs (at.%)
KSc ₂ F ₇ : 10% Lu ³⁺	10	8.58
KSc ₂ F ₇ : 10% Yb ³⁺	10	8.41
KSc ₂ F ₇ : 10% Dy ³⁺	10	9.03
KSc ₂ F ₇ : 10% Tb ³⁺	10	8.79
KSc ₂ F ₇ : 10% Eu ³⁺	10	9.32
KSc ₂ F ₇ : 10% Sm ³⁺	10	8.96
KSc ₂ F ₇ : 10% Ce ³⁺	10	8.65
KSc ₂ F ₇ : 10% La ³⁺	10	8.36
$KSc_2F_7: 1\% Sm^{3+}$	1	0.92
$KSc_2F_7: 5\% Sm^{3+}$	5	4.38
$KSc_2F_7: 20\% Sm^{3+}$	20	16.87

Table S1 Compositions of the NCs measured by ICP-MS.

Fig. S4 Histograms of particle size for KSc_2F_7 doped with (a) 10% Ce^{3+} , (b) 10% La^{3+} , (c) 20% Sm^{3+} . These data were obtained from the TEM images of more than 300 KSc_2F_7 NCs. The average sizes for the NCs with 10% Ce^{3+} , 10% La^{3+} and 20% Sm^{3+} doping were found to be about 4.5 (with a standard deviation of 0.9), 3.8 (with a standard deviation of 0.9), respectively.

Fig. S5 XRD patterns of the KSc_2F_7 NCs. (a) KSc_2F_7 : 1% Dy^{3+} , (b) KSc_2F_7 : 5% Dy^{3+} , (c) KSc_2F_7 : 10% Dy^{3+} , (d) KSc_2F_7 : 20% Dy^{3+} , (e) KSc_2F_7 : 1% Tb^{3+} , (f) KSc_2F_7 : 5% Tb^{3+} , (g) KSc_2F_7 : 10% Tb^{3+} , (h) KSc_2F_7 : 20% Tb^{3+} , (i) KSc_2F_7 : 1% Eu^{3+} , (j) KSc_2F_7 : 5% Eu^{3+} , (k) KSc_2F_7 : 10% Eu^{3+} , (l) KSc_2F_7 : 20% Eu^{3+} . Line pattern (lower part) of the orthorhombic phase KSc_2F_7 (JCPDS card 77-1321).

Fig. S6 TEM images of the KSc_2F_7 NCs. (a) KSc_2F_7 : 1% Dy^{3^+} , (b) KSc_2F_7 : 5% Dy^{3^+} , (c) KSc_2F_7 : 10% Dy^{3^+} , (d) KSc_2F_7 : 20% Dy^{3^+} , (e) KSc_2F_7 : 1% Tb^{3^+} , (f) KSc_2F_7 : 5% Tb^{3^+} , (g) KSc_2F_7 : 10% Tb^{3^+} , (h) KSc_2F_7 : 20% Tb^{3^+} , (i) KSc_2F_7 : 1% Eu^{3^+} , (j) KSc_2F_7 : 5% Eu^{3^+} , (k) KSc_2F_7 : 10% Eu^{3^+} , (l) KSc_2F_7 : 20% Eu^{3^+} .

Dopants	Length	Diameter	Aspect	Dopants	Length	Diameter	Aspect
	(nm)	(nm)	Ratio		(nm)	(nm)	Ratio
1% Dy ³⁺	140	6	23	20% Tb ³⁺	20	8	3
5% Dy ³⁺	62	7	9	1% Eu ³⁺	115	6	19
10% Dy ³⁺	57	12	5	5% Eu ³⁺	30	4	7
$20\% \text{ Dy}^{3+}$	22	6	4	10% Eu ³⁺	29	7	4
1% Tb ³⁺	123	6	21	$20\% \mathrm{Eu}^{3+}$	15	8	2
5% Tb ³⁺	48	7	7				
10% Tb ³⁺	35	7	5				

Table S2 Length, diameter and aspect ratio from the TEM images in Fig. S6.

Fig. S7 Graph of aspect ratio versus length for RE^{3+} -doped KSc_2F_7 NCs (RE=Dy, Tb, Eu), the black dots are Dy^{3+} -doped KSc_2F_7 NCs, the red dots are Tb^{3+} -doped KSc_2F_7 NCs, the blue dots are Eu^{3+} -doped KSc_2F_7 NCs. (Each from left to right is 0%, 1%, 5%, 10% and 20% doping, respectively).

Fig. S8 Power dependence study of the UC emission of the KSc_2F_7 : 10% Yb^{3+} , 1% Ho^{3+} , 10% Gd^{3+} NCs. Graph of ln (Intensity) versus ln (Power, mW) for the UC emission of Ho^{3+} is drawn. We can speculate that the 539 nm, 655 nm and 409 nm emissions of Ho^{3+} come from two-, two- and three-photon UC processes, respectively.

Fig. S9 Energy level diagram of Yb³⁺ ions and Ho³⁺ ions as well as UC emission mechanism in KSc₂F₇: 10% Yb³⁺, 1% Ho³⁺, 10% Gd³⁺ NCs. The excitation from the 980 nm laser is absorbed by Yb³⁺ ions, the electrons of Ho³⁺ ions are first excited from the ⁵I₈ ground-state to the ⁵I₆ level via excitation energy transfer from Yb³⁺ to Ho³⁺ ions, and then to the ⁵F₄ level by absorbing the energy of another electron from Yb³⁺ ions (²F_{5/2}), hence, the green ⁵F₄ -⁵I₈ emission (539 nm) occurs. The excited electrons of the ⁵F₄ (Ho³⁺) level decay to the emitting ⁵F₅ level, mainly through nonradiative process, and the red ⁵F₅→⁵I₈ emission (655 nm) occurs. The electrons of the Ho³⁺ in the ⁵F₅ excited state populate the ⁵G₄ level through a third 980 nm photon, and decay to the emitting ⁵G₅ level, leading to the purple emission of ⁵G₅-⁵I₈ (409 nm).

Fig. S10 (a) DC luminescence spectra of KSc_2F_7 : x% Eu³⁺. Black line is 1% Eu³⁺ doping, red line is 5% Eu³⁺ doping, blue line is 10% Eu³⁺ doping. (b) DC luminescence photography of KSc_2F_7 : x% Eu³⁺ NCs under 265 nm excitation. One by one from left to right is 1% Eu³⁺, 5% Eu³⁺, 10% Eu³⁺-doping, respectively.