## **Supplementary material**

## Schiff Bases Particles with Aggregation-Induced Enhanced Emission: Random Aggregation Preventing - Stacking

Lianke Wang, Zheng Zheng, Zhipeng Yu, Jun Zheng, Min Fang, Jieying Wu, Yupeng Tian and Hongping Zhou,\*

College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei 230601, P. R. China

\*Corresponding author. Fax: +86-551-5107304; Tel: +86-551-5108151

E-mail address: <u>zhpzhp@263.net</u>.

## **Table of Contents**

 
 Table S1. Relevant Spectroscopic Data of the Schiff Bases in Different Solvents ...... 3
 Figure S1. The UV-Vis absorption spectrum (left) and fluorescence emission spectrum (right) of L1 in different solvents using 2 as the excitation wavelength...... 3 Figure S2. The UV-Vis absorption spectrum (left) and fluorescence emission spectrum (right) of L2 in different solvents using 2 as the excitation wavelength...... 4 Figure S3. The UV-Vis absorption spectrum (left) and fluorescence emission spectrum (right) of L3 in different solvents using 2 as the excitation wavelength...... 4 Figure S4. The absorption (a) (c) and emission (b) (d) spectra of L1 and L2 in THF/H<sub>2</sub>O mixtures with different water fractions ( $f_w$ ), respectively. The inset depicts the changes of PL peak intensity with different water fractions and the photos taken under UV light of L1 and L2 in the THF/water mixtures. (e) (f) and (g) depict the changes of PL intensity of L1, L2 and L3 with different water fractions, respectively. Figure S5. DSC thermograms of L1, L2 and L3, heating rate: 20 °C /min, atmosphere: Figure S6. TGA thermograms of L1, L2 and L3, recorded after pre-warming at 120 Figure S7. The fluorescence spectroscopy of L1 and L2 in the pure solvents, the Figure S8. The absorption spectra of L1, L2 and L3 in the pure solvention, the mixed **Table S2**. The average diameter of aggregates with different  $f_w$  of L1-L3......7 Figure S9. Particle size distributions of L1 in THF/water mixtures with water fractions of (a) 50%, (b) 70%, (c) 90% and (d) 95%......7 Figure S10. Particle size distributions of L2 in THF/water mixtures with water Figure S11. Particle size distributions of L3 in THF/water mixtures with water Figure S12. TEM images of amorphous-like aggregates of L1, L2 and L3 formed in 

 Table S3. Crystallographic Data for L3.
 9

 Figure S16. MS spectrum of L1. 

| Compounds | solvent       | 2 <sup>a</sup> | b      | em <sup>c</sup> | $ST^{d}$ | $1^a$ | b     |
|-----------|---------------|----------------|--------|-----------------|----------|-------|-------|
| L1        | benzene       | 339.0          | 2.647  | 379.4           | 3141.119 | 302.5 | 2.762 |
|           | $CH_2Cl_2$    | 338.0          | 2.609  | 380.2           | 3283.852 | 302.0 | 2.656 |
|           | THF           | 338.5          | 3.0945 | 378.6           | 3128.997 | 302.5 | 2.901 |
|           | ethyl acetate | 337.5          | 2.903  | 378.4           | 3202.568 | 300.5 | 2.984 |
|           | acetonitrile  | 337.0          | 2.890  | 381.8           | 3481.867 | 300.5 | 2.895 |
|           | DMF           | 337.5          | 2.909  | 389.4           | 3949.095 | 302,0 | 2.724 |
| L2        | benzene       | 340.0          | 2.617  | 377.6           | 2928.714 | 303.0 | 2.248 |
|           | $CH_2Cl_2$    | 336.0          | 2.700  | 378.4           | 3334.843 | 301.5 | 2.819 |
|           | THF           | 338.0          | 2.754  | 381.4           | 3366.606 | 302.5 | 2.749 |
|           | ethyl acetate | 336.0          | 2.612  | 378.0           | 3306.878 | 301.0 | 2.673 |
|           | acetonitrile  | 336.5          | 2.688  | 379.8           | 3388.035 | 300.0 | 2.712 |
|           | DMF           | 337.0          | 2.595  | 387.6           | 3873.797 | 303.0 | 2.517 |
| L3        | benzene       | 342.5          | 2.233  | 379.0           | 2811.856 | 303.0 | 2.435 |
|           | $CH_2Cl_2$    | 341.5          | 2.532  | 381.0           | 3035.858 | 301.5 | 2.778 |
|           | THF           | 340.5          | 2.696  | 381.8           | 3176.852 | 301.0 | 2.892 |
|           | ethyl acetate | 338.5          | 2.536  | 379.2           | 3170.789 | 300.0 | 2.801 |
|           | acetonitrile  | 336.0          | 2.586  | 381.4           | 3542.712 | 299.0 | 2.820 |
|           | DMF           | 339.0          | 2.866  | 389.0           | 3791.584 | 301.5 | 3.184 |

Table S1. Relevant Spectroscopic Data of the Schiff Bases in Different Solvents.

<sup>*a*</sup> Absorption peak position in nm (1×10<sup>-5</sup>mol L<sup>-1</sup>). <sup>*b*</sup> Maximum molar absorbance in 10<sup>4</sup> mol<sup>-1</sup> L cm<sup>-1</sup>. <sup>*c*</sup> Peak position of SPEF in nm (1.0×10<sup>-5</sup> mol L<sup>-1</sup>), excited at the absorption maximum. <sup>*d*</sup> Stokes shift in nm.



**Figure S1**. The UV-Vis absorption spectrum (left) and fluorescence emission spectrum (right) of **L1** in different solvents using  $_2$  as the excitation wavelength.



**Figure S2**. The UV-Vis absorption spectrum (left) and fluorescence emission spectrum (right) of **L2** in different solvents using  $_2$  as the excitation wavelength.



**Figure S3**. The UV-Vis absorption spectrum (left) and fluorescence emission spectrum (right) of **L3** in different solvents using  $_2$  as the excitation wavelength.





**Figure S4.** The absorption (a) (c) and emission (b) (d) spectra of L1 and L2 in THF/H<sub>2</sub>O mixtures with different water fractions ( $f_w$ ), respectively. The inset depicts the changes of integrated intensity with different water fractions and the photos taken under UV light of L1 and L2 in the THF/water mixtures. (e) (f) and (g) depict the changes of PL intensity of L1, L2 and L3 with different water fractions, respectively.



Figure S5. DSC thermograms of L1, L2 and L3, heating rate: 20  $^{\circ}$ C /min, atmosphere: N<sub>2</sub>.



**Figure S6**. TGA thermograms of **L1**, **L2** and **L3**, recorded after pre-warming at 120 °C for 10 min under nitrogen at a heating rate of 20 °C /min.



**Figure S7**. The fluorescent spectroscopy of **L1** and **L2** in the pure solvents, the mixed solution with  $f_w = 95\%$ , the film, the powder.



**Figure S8**. The absorption spectra of L1, L2 and L3 in the pure solvention, the mixed solution with  $f_w = 95\%$ , the film, the powder.

| L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | L2                        |                     | L3                        |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------|---------------------|---------------------------|--------|--|
| $d_{fw=50\%}$ ( nm )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1696.7 | $d_{fw=50\%}$ ( nm )      | 1499                | $d_{fw=60\%}$ ( nm )      | 1015.1 |  |
| $d_{fw=70\%}($ nm $)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 731.1  | $d_{fw=70\%}(\text{ nm})$ | 557                 | $d_{fw=70\%}($ nm $)$     | 569.5  |  |
| $d_{fw=90\%}(\text{ nm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 353.6  | $d_{fw=90\%}(\text{ nm})$ | 301.2               | $d_{fw=90\%}($ nm $)$     | 310.9  |  |
| $d_{fw=95\%}(\text{ nm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 288.3  | $d_{fw=95\%}(\text{ nm})$ | 255.4               | $d_{fw=95\%}(\text{ nm})$ | 249.8  |  |
| d = average diameter of aggregates with different water fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                           |                     |                           |        |  |
| (a) 100 -<br>(b) 100 -<br>(c) 200 - |        |                           | ntial intensity (%) | -70%                      |        |  |

**Table S2**. The average diameter of aggregates with different  $f_w$  of L1-L3.



**Figure S9**. Particle size distributions of **L1** in THF/water mixtures with water fractions of (a) 50%, (b) 70%, (c) 90% and (d) 95%.





**Figure S10**. Particle size distributions of **L2** in THF/water mixtures with water fractions of (a) 50%, (b) 70%, (c) 90% and (d) 95%.



**Figure S11**. Particle size distributions of **L3** in THF/water mixtures with water fractions of (a) 60%, (b) 70%, (c) 90% and (d) 95%.



Figure S12. TEM images of amorphous-like aggregates of L1, L2 and L3 formed in

THF/water mixtures with  $f_w = 95\%$ .



Figure S13. XRD patterns of L1, L2 and L3 solids.

| Table S3. ( | Crystallographic | Data | for | L3. |
|-------------|------------------|------|-----|-----|
|             |                  |      |     |     |

| compound                              | L3                 |  |
|---------------------------------------|--------------------|--|
| empirical formula                     | $C_{19}H_{13}N_3O$ |  |
| formula weight                        | 299.32             |  |
| crystal system                        | Orthorhombic       |  |
| space group                           | Pbca               |  |
| <i>a</i> [Å]                          | 10.969(5)          |  |
| <i>b</i> [Å]                          | 7.342(5)           |  |
| <i>c</i> [Å]                          | 36.533(5)          |  |
| [°]                                   | 90.000(5)          |  |
| [°]                                   | 90.000(5)          |  |
| [°]                                   | 90.000(5)          |  |
| V [Å <sup>3</sup> ]                   | 2942(2)            |  |
| Ζ                                     | 8                  |  |
| <i>T</i> [K]                          | 298(2)             |  |
| $D_{ m calcd}[ m g \cdot  m cm^{-3}]$ | 1.351              |  |
| $\mu [\mathrm{mm}^{-1}]$              | 0.086              |  |
| range [°]                             | 1.11-24.99         |  |
| total no. data                        | 19174              |  |
| no.unique data                        | 2592               |  |
| no. params refined                    | 208                |  |
| $R_1$                                 | 0.0378             |  |
| $wR_2$                                | 0.1133             |  |
| GOF                                   | 1.115              |  |





Figure S15. <sup>13</sup>C NMR spectrum of L1.







Figure S17. <sup>1</sup>H NMR spectrum of L2.





**Figure S18**. <sup>13</sup>C NMR spectrum of **L2**.

Figure S19. MS spectrum of L2.







Figure S21. <sup>13</sup>C NMR spectrum of L3.





