Electronic Supplementary Information for

Zwitterionic pyridinium derivatives of [closo-1-CB₉H₁₀]⁻ and [closo-1-CB₁₁H₁₂]⁻ as high $\Delta \epsilon$

additives to a nematic host

Jacek Pecyna, ^a Damian Pociecha, ^b and Piotr Kaszyński*^{a,c}

^a Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA, Tel: 1-615-322-3458; E-mail: piotr.kaszynski@vanderbilt.edu.

^b Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.

^c Faculty of Chemistry, University of Łódź, Tamka 12, 91403 Łódź, Poland.

Table of content

1.	Synthetic details	S2
2.	Enantiomeric Excess	S7
3.	Powder XRD measurements	S7
4.	Electronic absorption spectra	S8
5.	Binary mixtures	S9
	• Binary mixtures preparation	
	• Thermal analysis	S9
	• Dielectric measurements	S11
6.	Background for calculations in the nematic phase	S12
7.	Quantum mechanical calculations	S13
8.	Archive for DFT calculations	S17
9.	References	S19

1. Additional synthetic details

1-Amino-12-hexyl-1-carba-closo-dodecaborane (4[6]).¹

A solution of dry ZnCl₂ (1.46 g, 10.7 mmol) in anhydrous THF (50 mL) under Ar was treated with C₆H₁₃MgBr (5.4 mL, 10.7 mmol, 2.0 M in Et₂O) at 0 °C forming a white, thick slurry which was stirred for 20 min. Anhydrous NMP (25 mL), Pd₂dba₃ (16 mg, 2 mol %), and $[HPCv_3]^+$ $[BF_4]^-$ (27 mg, 8 mol %) were added and the reaction mixture turn dark brown, but slowly faded to red/orange. After 15 minutes, iodo amine 8 (320 mg, 0.894 mmol) was added and the reaction mixture was refluxed at 90 °C for 72 hr. The reaction was cooled to room temperature, washed with saturated NH₄Cl, and the solvents were removed in vacuo. The solution was extracted with Et_2O (3x100 mL). Et_2O was dried and evaporated to leave brown residue. Excess alcohol and NMP were removed under reduced pressure to leave brown liquid. The crude material was purified by column chromatography (CH_2Cl_2/CH_3CN , 3:1) to give 102 mg of the desired material as brown solid. The solid was treated with 10% HCl and extracted into Et₂O [¹H NMR (CD₃CN, 400 MHz) δ 0.66 (br t, J = 6.6 Hz, 2H), 0.86 (t, J = 7.1 Hz, 3H), 1.0-2.8 (br m, 10H), 1.09-1.28 (m, 8H), 5.8 (br s, 3H); $\{^{1}H\}^{-11}B$ NMR (CD₃CN, 128 MHz) δ -15.1 (5B), -12.4 (5B), 0.94 (1B)]. The Et₂O layers were combined and solvent evaporated. The residue was washed several times with boiling H₂O. The water washes were combined, the pH of the solution was adjusted slightly above 7 with 10% KOH and excess NMe₄OH•5H₂O (1.5 eq) was added resulting in white precipitation. The solution was extracted with CH₂Cl₂, the organic layers combined, dried (Na₂SO₄), and evaporated to give 98 mg (35% yield) of the product as yellowish viscous oil. Analytical sample of 4[6] was prepared by recrystallization from EtOH/H₂O: mp 165 °C; ¹H NMR (CD₃CN, 400 MHz) δ 0.40 (br s, 2H), 0.86 (t, *J* = 7.0 Hz, 3H), 1.0-2.8 (br m, 10H), 1.09-1.28 (m, 10H), 3.08 (s, 12H); {¹H} ¹¹B NMR (CD₃CN, 128 MHz) δ -13.2 (10B), -3.5 (1B). Anal. Calcd. for C₁₁H₃₇N₂B₁₁: C, 41.77; H, 11.79; N, 8.86. Found: C, 41.59; H, 11.37; N, 8.06%.

[*closo*-1-CB₁₁H₁₀-1-NH₂-12-C₅H₁₁]⁻[NMe₄]⁺ (4[5]) and [*closo*-1-CB₁₁H₁₀-1-NH₂-12-C₁₀H₂₁]⁻ [NMe₄]⁺ (4[10]) were obtained by reacting iodo amine 8 with appropriate Grignard reagents following the procedure for 4[6].² Their preparation is described elsewhere.¹

4-Pentyloxypyrylium triflate (5a).

The compound was prepared in about 80% purity by Method A. ¹H NMR (CDCl₃, 400 MHz) δ 0.90 (t, *J* = 7.1 Hz, 3H), 1.33-1.48 (m, 4H), 1.92 (quint, *J* = 6.5 Hz, 2H), 4.60 (t, *J* = 6.5 Hz, 2H), 7.74 (d, *J* = 5.8 Hz, 2H), 9.15 (d, *J* = 5.8 Hz, 2H). Major impurity: 7.32 (d, *J* = 6.0 Hz) and 8.72 (d, *J* = 6.0 Hz) in a 1:1 ratio.

4-Heptyloxypyrylium triflate (5b).

The compound was prepared in about 85% purity by Method A. ¹H NMR (CD₃CN, 400 MHz) δ 0.91 (t, *J* = 6.8 Hz, 3H), 1.27-1.41 (m, 6H), 1.43-1.51 (m, 2H), 1.90 (quint, *J* = 7.2 Hz, 2H), 4.58 (t, *J* = 6.6 Hz, 2H), 8.63 (d, *J* = 6.0 Hz, 2H), 9.07 (d, *J* = 5.9 Hz, 2H). Major impurity: 7.53 (d, *J* = 5.9 Hz) and 8.93 (d, *J* = 5.9 Hz) in a 1:1 ratio.

4-(2-octyloxy)pyrylium triflate (5c).

The compound was prepared in about 25% purity by Method C. ¹H NMR (CDCl₃, 400 MHz) δ 0.83 (t, *J* = 6.8 Hz, 3H), 1.20-1.42 (m, 8H), 1.46 (d, *J* = 6.1 Hz, 3H), 1.69-1.76 (m, 1H),

1.79-1.88 (m, 1H), 5.17 (sextet, J = 6.1 Hz, 1H), 7.71 (d, J = 5.8 Hz, 2H), 9.12 (d, J = 5.8 Hz, 2H). Major impurity: 6.69 (d, J = 6.2 Hz) and 8.08 (d, J = 6.1 Hz) in a 1:1 ratio.

4-((trans-4-Pentylcyclohexyl)methoxy)pyrylium triflate (5d).

The compound was prepared in about 60% purity by Method B. ¹H NMR (CDCl₃, 400 MHz) δ 0.87 (t, *J* = 6.7 Hz, 3H), 0.90-1.00 (m, 4H), 1.15-1.30 (m, 9H), 1.69-1.84 (m, 5H), 4.40 (d, *J* = 6.3 Hz, 2H), 7.71 (d, *J* = 5.9 Hz, 2H), 9.14 (d, *J* = 5.9 Hz, 2H). Major impurity: 6.95 (d, *J* = 5.4 Hz) and 8.30 (d, *J* = 5.1 Hz) in a 1:1 ratio.

General methods for preparation of alkyl triflates 6.

Method A. Following a general method for alkyl triflates,³ to a vigorously stirred solution of triflic anhydride (1.2 mmol) in CH_2Cl_2 (15 mL) at 0 °C, a solution of pyridine (1 mmol) and primary alcohol (1 mmol) in CH_2Cl_2 (10 mL) was added dropwise over a 15-min period and the mixture was stirred for an additional 1 hr at 0 °C. The solution was washed with ice-cold H_2O , dried (Na₂SO₄) and evaporated to dryness to give the appropriate alkyl triflate **6** as a colorless liquid that quickly began to darken. The resulting mixture was filtered through a cotton plug and used without further purification.

Method B. To a vigorously stirred mixture of a secondary alcohol (1 mmol) and pyridine (1 mmol) at -78 °C in CH₂Cl₂ (25 mL) was added dropwise triflic anhydride (1 mmol). The mixture was stirred for 10 minutes at -78 °C and then kept at 0 °C until the alcohol was consumed (by TLC). The mixture was washed with ice-cold water, dried (Na₂SO₄) and the solvent was removed *in vacuo* at 0 °C. The resulting triflate **6** was kept at 0 °C and quickly used in the next step.

1-Pentyl triflate (6a).^{4,5}

The compound was prepared by Method A as a colorless liquid: ¹H NMR (CDCl₃, 400 MHz) δ 0.93 (t, *J* = 7.1 Hz, 3H), 1.33-1.46 (m, 4H), 1.84 (quint, *J* = 6.6 Hz, 2H), 4.54 (t, *J* = 6.5 Hz, 2H).

1-Heptyl triflate (6b).⁶

 C_7H_{15} -O-S-CF₃

The compound was prepared by Method A as a colorless liquid: ¹H NMR (CDCl₃, 400 MHz) δ 0.89 (t, *J* = 7.0 Hz, 3H), 1.26-1.46 (m, 8H), 1.83 (quint, *J* = 6.6 Hz, 2H), 4.54 (t, *J* = 6.5 Hz, 2H).

(S)-2-octyl triflate (6c).

The compound was prepared by Method B as a colorless liquid: ¹H NMR (CDCl₃, 400 MHz) δ 0.89 (t, *J* = 7.0 Hz, 3H), 1.24-1.47 (m, 8H), 1.51 (d, *J* = 6.3 Hz, 3H), 1.63-1.74 (m, 1H), 1.78-1.87 (m, 1H), 5.07 (sext, *J* = 6.3 Hz, 1H).

(trans-4-Pentylcyclohexyl)methyl triflate (6d).

The compound was prepared by Method A as a colorless liquid: ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (t, *J* = 6.6 Hz, 3H), 0.90-1.09 (m, 4H), 1.15-1.34 (m, 9H), 1.70-1.77 (m, 1H), 1.80-1.83 (br d, *J* = 10.6 Hz, 4H), 4.33 (d, *J* = 6.3 Hz, 2H).

Preparation of [*closo*-1-CB₁₁H₁₀-1-NH₂-12-I]⁻[NMe₄]⁺ (8).¹

A suspension of $[closo-1-CB_{11}H_{10}-1-COOH-12-I]^{-}[NEt_4]^{+}$ (9,⁷ 1.108 g) [¹¹B NMR (CD₃CN, 128 MHz: δ -11.6 (5B), -13.6 (5B), -16.6 (1B)] in anhydrous CH₂Cl₂ (20 mL) was treated with (COCl)₂ (0.952 g, 7.50 mmol). Vigorous bubbling of CO and CO₂ was observed, followed by the dissolution of the substrate and the formation of a slightly yellow solution. The solution was stirred for 45 min at room temperature and the solvent was removed *in vacuo* to give 1.16 g of crude [*closo*-1-CB₁₁H₁₀-1-COCl-12-I]⁻ [NEt₄]⁺ as a slightly yellow solid: ¹¹B NMR (CD₃CN, 128 MHz) δ -11.0 (5B), -13.1 (5B), -15.4 (1B).

Crude $[closo-1-CB_{11}H_{10}-1-COCl-12-I]^{-}[NEt_4]^{+}$ (1.16 g, 2.51 mmol) was dissolved in anhydrous CH₂Cl₂ (15 mL) and added via a syringe to solid anhydrous ZnCl₂ (34 mg, 0.25 mmol) under Ar atmosphere. The reaction was cooled to 0 °C and Me₃SiN₃ (374 mg, 3.25 mmol) was added. The reaction mixture was stirred at 0 °C for 30 minutes, after which it was warmed to room temperature and stirred for 4 hr. The reaction mixture was poured into ice-cold H₂O (15 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The organic layers were combined, dried (Na₂SO₄) and filtered and the solvent was removed *in vacuo* giving 1.19 g of [*closo*-1-CB₁₁H₁₀-1-CON₃-12-I]⁻ [NEt₄]⁺ as a slightly yellow crystalline solid: ¹¹B NMR (CD₃CN, 128 MHz) δ -11.2 (5B), -13.6 (5B), -16.0.

Crude $[closo-1-CB_{11}H_{10}-1-CON_3-12-I]^ [NEt_4]^+$ (1.19 g, 2.54 mmol) was dissolved in anhydrous CH₃CN (20 mL) and refluxed for 2 hr. The reaction was cooled to room temperature, the solvent removed and the residue dried *in vacuo* giving 1.15 g of crude $[closo-1-CB_{11}H_{10}-1-NCO-12-I]^ [NEt_4]^+$ as a slightly yellow solid: ¹¹B NMR (CD₃CN, 128 MHz) δ -12.4 (10B), -20.2 (1B).

A solution of anhydrous *tert*-butanol (10 mL), anhydrous CH₃CN (15 mL) and crude [*closo*-1-CB₁₁H₁₀-1-NCO-12-I]⁻ [NEt₄]⁺ (1.15 g, 2.61 mmol) was stirred at 85 °C for 3 hr, after which solvents were removed, leaving 1.08 g of crude [*closo*-1-CB₁₁H₁₀-1-NHBoc-12-I]⁻ [NEt₄]⁺ as a yellow solid. The crude solid was dissolved in CH₂Cl₂ and passed through a silica gel plug buffered with 1% NEt₃ in CH₂Cl₂. Elution with a buffered CH₃CN/CH₂Cl₂ solution (1% NEt₃, 20% CH₃CN, 79% CH₂Cl₂) afforded 0.431 g (45% yield) contaminated with the deprotected iodo amine **8**: ¹¹B NMR (CD₃CN, 128 MHz) δ -12.7 (10B), -21.8 (1B).

A suspension of $[closo-1-CB_{11}H_{10}-1-NHBoc-12-I]^{-}[NEt_{4}]^{+}$ (0.431 g, 0.838 mmol) in a 1:3 mixture of concentrated HCl in CH₃OH (50 mL) was stirred overnight at room temperature. Water

was added (30 ml) and CH₃OH was removed *in vacuo*. Concentrated HCl was added (10 mL) and [*closo*-1-CB₁₁H₁₀-1-NH₃-12-I] was extracted into Et₂O (3 x 25 mL). The organic layers were combined, dried (Na₂SO₄) and evaporated in *vacuo* to give 0.25 g of oily residue. The oil was treated with aqueous solution of NMe₄OH to give (0.32 g) of crude [*closo*-1-CB₁₁H₁₀-1-NH₂-12-I]⁻[NMe₄]⁺ (**8**) which was recrystallized from aqueous EtOH and dried in *vacuo*. Analytical data are consistent with those obtained by different route:¹ {¹H} ¹¹B NMR (CD₃CN, 128 MHz) δ -12.7 (10B), -23.0 (1B).

2. Enantiomeric Excess

A solution of compound 1[6]c in EtOH (1 mg / 1 mL) was analyzed using a reversed phase AD-H Chiral column and 15% EtOH in hexane as the eluent. The resulting two signals in the chromatogram (Fig. S1) were integrated and *ee* was calculated from the formula:

ee = 100% *(areaI-areaII)/(areaI + areaII).

The structural relationship of the two compounds showing as separate signals in the chromatogram was confirmed by analysis of their UV spectra.

Fig. S1. A chromatogram for 1[6]c.

3. Powder XRD measurements

X-ray diffraction experiments were performed with Bruker D8 GADDS (Cu K α radiation, Göbel mirror, point collimator, Vantec 2000 area detector) equipped with a modified Linkam heating stage and with Bruker D8 Discover system (Cu K α radiation, Göbel mirror, scintillation counter, Anton Parr DCS350 heating stage). Samples were prepared in a form of a thin film or a droplet on heated surface. The X-ray beam was incident nearly parallel to sample surface, and resulting XRD patterns were recorded as a function of temperature on cooling.

XRD data was analyzed using program TOPAS 3 (Bruker). The asymmetric wide angle signal in diffractogram of **2[10]b** was fitted with two functions type PV (pseudo-Voight).

Thermal expansion coefficients were obtained from the data in a temperature range 196–183 $^{\circ}$ C for SmA phase and 120–170 $^{\circ}$ C for the Cr₂ phase (Fig. S2).

Fig. S2. *d* spacing for 2[10]b as a function of temperature obtained on cooling.

Fig. S3. XRD pattern for **2[10]b** at 170 °C (the Cr₂ phase)

4. Electronic absorption spectra

UV-vis spectra for 1[6]c and 2[6]c were recorded in spectroscopic grade MeCN at concentration in a range of $1-10 \times 10^{-5}$ M. Extinction coefficients were obtained by fitting the maximum absorbance at 282 nm for 1[6]c and 264 nm for 2[6]c against concentration in agreement with Beer's law.

5. Binary mixtures

<u>Binary mixtures preparation</u>. Solutions of the pyridinium derivatives in appropriate host (15-20 mg of the host) were prepared in an open vial. The mixture of the compound and host in CH_2Cl_2 was heated for 2 hr at 60 °C to remove the solvent. The binary mixtures were analyzed by polarized optical microscopy (POM) to ensure that the mixtures were homogenous. The mixtures were then allowed to stand for 2 hr at room temperature.

<u>Thermal analysis</u> $T_{\rm NI}$ for each homogenous mixture was determined by DSC as the peak of the transition using small samples (0.5 - 1 mg) and a heating rate of 5 K·min⁻¹. The results are shown in Tables S1-S3. The virtual N-I transition temperatures, $[T_{\rm NI}]$, were determined for **1[6]c** and **1[6]d** by extrapolation from the single concentration. For compound **2[10]b** the $[T_{\rm NI}]$ was obtained by line extrapolation of the data for peak of the transition to pure substance (x = 1) and the result is shown in Fig. S4. To minimize the error, the intercept in the fitting function was set as the peak $T_{\rm NI}$ for the pure host.

Table S2. $T_{\rm NI}$ for solution of 1[6]c in ClEster.

T (0.0	Mole fraction, x						
$T_{\rm NI}/{}^{\circ}{\rm C}$	0.00 (host)	0.01697	0.03883	-			
Onset		39.02	38.32	-			
Peak	46.36	40.50	39.59	-			

Table S2. $T_{\rm NI}$ for solution of **1[6]d** in **ClEster**.

T _{NI} ∕°C	0.00 (host)	0.0078	0.0178	_
Onset		40.04	40.13	-
Peak	46.36	41.99	42.22	_

Table S3. $T_{\rm NI}$ for solution of 2[10]b in ClEster.

	Mole fraction, x						
T _{NI} ∕°C	0.00 (host)	0.02676	0.04102	0.05961			
Onset		46.38	47.67	47.60			
Peak	46.36	46.96	48.18	48.44			

 $[T_{\rm NI}] = 82 \pm 4$ °C, $r^2 = 0.91$

Fig. S4. Nematic-isotropic transition temperature (T_{NI}) as a function of mole fraction of 2[10]b in ClEster.

<u>Dielectric measurements</u> Dielectric parameters for compounds 1[6] and 2[10] in low concentration solutions in ClEster host were measured in two different cells: 4 μ m and 10 μ m supplied by LC Vision, Inc.

Table S4. Dielectric parameters for 1[6]c in ClEster at 25 °C.

D	Mole fraction, x						
Parameter	0.00 (host)	0.0170	0.0374	_			
		(4 µm)	(10 µm)				
8	2.86±0.01	4.39±0.02	4.58±0.01	_			
£	3.42±0.01	3.73±0.02	3.81±0.01	_			
Δε	-0.56±0.01	0.66±0.01	0.77±0.01	_			

Table S5. Dielectric parameters for 1[6]d in ClEster at 25 °C.

	Mole fraction, x							
Parameter	0.00 (host)	0.0271 (4 μm)	0.0271 (10 μm)	_				
8∥	2.86±0.01	3.94±0.01	4.59±0.01	_				
3	3.42±0.01	3.48±0.01	3.69±0.01	_				

Δε	-0.56±0.01	0.46±0.01	0.91±0.01	-
----	------------	-----------	-----------	---

Table S6. Dielectric parameters for 2[10]d in ClEster at 25 °C measured in 10 µm cells..

	Mole fraction, x							
Parameter	0.00 (host)	0.0267 (4 μm)	0.0296 (10 μm)	0.0371 (10 μm)	0.0649 (10 μm)			
3	2.86±0.01	4.80±0.02	4.54±0.05	4.64±0.03	5.15±0.03			
٤_	3.42±0.01	3.66±0.01	3.62±0.04	3.73±0.03	3.86±0.03			
Δε	-0.56±0.01	1.13±0.02	0.91±0.01	0.91±0.01	1.29±0.01			

Table S5. Dielectric parameters for 1-Quin in ClEster at 25 °C measured in 10 µm cells..

	Mole fraction, x						
Parameter	0.00 (host)	0.0234 (10 μm)	_	_			
∎3	2.86±0.01	4.06±0.01	_	_			
£_	3.42±0.01	3.60±0.01	_	_			
Δε	-0.56±0.01	0.46±0.01	_	_			

6. Background for calculations in the nematic phase

The equations derived from the Maier-Meier theory⁹ used in this work were adopted from literature¹⁰ and had the following form:

$$\Delta \varepsilon = \frac{NFh}{\varepsilon_0} \left\{ \Delta \alpha - \frac{F \mu_{eff}^2}{2k_B T} \left(1 - 3\cos^2 \beta \right) \right\} S \tag{1}$$

$$\varepsilon_{\parallel} = 1 + \frac{NFh}{\varepsilon_0} \left\{ \overline{\alpha} + \frac{2}{3} \Delta \alpha S + \frac{F \mu_{eff}^2}{3k_B T} \left[1 - \left(1 - 3\cos^2 \beta \right) S \right] \right\}$$
(2)

$$\varepsilon_{\perp} = 1 + \frac{NFh}{\varepsilon_0} \left\{ \frac{-1}{\alpha} + \frac{1}{3} \Delta \alpha S + \frac{F \mu_{eff}^2}{3k_B T} \left[1 - \left(1 - 3\cos^2 \beta \right) S \right] \right\}$$
(3)

All quantities were in SI units as defined in the ESI in previous publications.¹¹

Field parameters F = 1.2090 and h = 1.28754 in equations 1-3 were assumed to be of pure host, **ClEster**, and obtained from literature dielectric and optical data¹² according to equation 4 and 5. Permittivity ε_s was assumed to be experimental average permittivity ($\varepsilon = 3.07$) for the pure host, **ClEster**.

$$F = \frac{1}{1 - \overline{\alpha} \cdot f} \text{ where } f = \frac{2(\overline{\varepsilon}_s - 1)}{2\overline{\varepsilon}_s + 1} \cdot \frac{N}{3\varepsilon_0}$$
(4)
$$h = \frac{3\varepsilon_s}{(2\varepsilon_s + 1)}$$
(5)

Number density *N* used in all calculations was obtained for each additive assuming density of the liquid to be $1000 \text{ kg} \cdot \text{m}^{-3}$.

7. Results of quantum mechanical calculations

B3LYP/6-31G(d,p) in vacuum

<u>Dipole moment components and polarizability tensors for selected molecules in vacuum</u> All molecules are in Gaussian standard orientation with their long molecular axes oriented along the x axis. Dipole moments in Debye and polarizability in au $(1\text{\AA}^3 = 0.1482 \text{ au})$

1[6]b

Dipole moment (field-independent basis, Debye): X= -18.1719 Y= 1.9841 Z= 0.1473 Tot= 18.2805 Exact polarizability: 527.733 12.233 271.109 0.853 -2.557 231.411

2[6]b

```
Dipole moment (field-independent basis, Debye):

X= -18.1273 Y= -1.8980 Z= -0.2514 Tot= 18.2281

Exact polarizability: 513.575 6.870 285.654 0.575 -2.720 250.112
```

1-Sulf

 Exact polarizability: 437.478 2.589 250.632 7.877 5.079 254.336

1-Quin

```
Dipole moment (field-independent basis, Debye):
X= 15.1515 Y= 2.7897 Z= 0.0065 Tot= 15.4062
Exact polarizability: 432.278 5.453 257.396 -0.435 -0.245 249.024
```

	μ /D	μ_{\perp} /D	μ /D	β ⊡ °	$\Delta \alpha$ /Å ³	$\begin{array}{c} \alpha_{\text{avrg}} \\ / \mathring{A}^3 \end{array}$
1[6]b	18.2	2.0	18.3	6.3	41.0	50.9
2[6]b	18.1	1.9	18.2	6.0	36.4	51.8
1-Sulf	14.4	2.5	14.6	9.7	27.4	46.6
1-Quin	15.2	2.8	15.4	10.4	26.5	46.4

Table S7. Calculated molecular parameters for selected compounds in vacuum.^a

^{*a*} Vacuum dipole moments and polarizabilities obtained at the B3LYP/6-31G(\bar{d} ,p) level of theory. Polarizability values calculated from diagonal polarizability tensors were converted from a.u. to Å³ using the factor 0.1482. ^{*b*} Angle between the net dipole vector μ and $\mu_{||}$.

B3LYP/6-31G(d,p)// B3LYP/6-31G(d,p) with PCM

Dipole moment components and polarizability tensors for selected molecules in **ClEster** dielectric medium

All molecules are in Gaussian standard orientation with their long molecular axes oriented along the x axis. Dipole moments in Debye and polarizability in au $(1\text{\AA}^3 = 0.1482 \text{ au})$.

1[6]b

Dipole moment (field-independent basis, Debye): X= -20.1791 Y= -2.3542 Z= -0.1742 Tot= 20.3167 Exact polarizability: 551.381 13.075 327.035 1.156 -3.660 276.749

2[6]b

Dipole moment (field-independent basis, Debye): X= -20.0273 Y= -2.2408 Z= -0.2946 Tot= 20.1544 Exact polarizability: 548.816 8.304 346.624 0.818 -3.905 300.736

1-Sulf

Dipole moment (field-independent basis, Debye): X= 16.1039 Y= 1.1720 Z= 2.7095 Tot= 16.3722 Exact polarizability: 471.668 3.522 300.573 9.564 6.459 307.605

1-Quin

Dipole moment (field-independent basis, Debye): X= 16.7704 Y= 3.3147 Z= 0.0004 Tot= 17.0949 Exact polarizability: 464.778 7.201 310.761 -0.616 -0.232 302.458

B3LYP/6-31G(d,p) // B3LYP/6-31G(d,p) TD-DFT with PCM

Calculated electronic transition in MeCN dielectric medium

1[6]b

Excitation energies and oscillator strengths:

Excited	State	1:	Singlet-A 0 70374	4.0164	eV	308.69 nm	f=0.2479	<s**2>=0.000</s**2>
This sta	ate for	optimi	ization and/or s	second-orde	r c	orrection.		
Total Er	nerav, E	(TD-HE	F/TD-KS) = -110	1.81732722	- 0	01100010111		
Copying	the exc	ited s	state density fo	or this sta	te	as the 1-pa	rticle Rho	CI density.
Excited 106	State ->108	2:	Singlet-A 0.70330	4.0546	eV	305.78 nm	f=0.0004	<s**2>=0.000</s**2>
Excited 99 107	State ->108 ->109	3:	Singlet-A 0.11388 0.68994	4.5880	eV	270.23 nm	f=0.0037	<s**2>=0.000</s**2>
Excited 106	State ->109	4:	Singlet-A 0.70514	4.7669	eV	260.09 nm	f=0.0001	<s**2>=0.000</s**2>
Excited 104 105	State ->108 ->108	5:	Singlet-A -0.46181 0.52379	4.8536	eV	255.45 nm	f=0.0008	<s**2>=0.000</s**2>
Excited 103 104	State ->108 ->108	6:	Singlet-A 0.66756 -0.19010	4.9196	eV	252.02 nm	f=0.0002	<s**2>=0.000</s**2>
Excited 103 104 105	State ->108 ->108 ->108	7:	Singlet-A 0.17099 0.49545 0.46878	5.0933	eV	243.43 nm	f=0.0003	<s**2>=0.000</s**2>
Excited 99 102 103	State ->109 ->108 ->109	8:	Singlet-A 0.12253 0.67039 -0.10200	5.2501	eV	236.16 nm	f=0.4446	<s**2>=0.000</s**2>
Excited 107	State ->110	9:	Singlet-A 0.69719	5.4041	eV	229.42 nm	f=0.0000	<s**2>=0.000</s**2>
Excited 99 102 103 107	State ->108 ->109 ->109 ->109	10:	Singlet-A -0.37311 0.53344 0.12975 0.10797	5.4988	eV	225.47 nm	f=0.0272	<s**2>=0.000</s**2>

2[6]b

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 4.7745 eV 259.68 nm f=0.1555 <S**2>=0.000 112 ->114 -0.17631 113 ->114 0.66664 This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1152.76925703 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 4.7894 eV 258.87 nm f=0.0276 <S**2>=0.000 111 ->114 0.21861 112 ->114 0.65087 113 ->114 0.14868 Excited State 3: Singlet-A 5.0074 eV 247.60 nm f=0.0021 <S**2>=0.000 109 ->114 -0.17564 111 ->114 0.64357 112 ->114 -0.17811 113 ->114 -0.13995 Excited State 4: Singlet-A 5.0481 eV 245.61 nm f=0.0129 <S**2>=0.000 108 ->114 -0.28229 109 ->114 -0.19533 110 ->114 0.60224 Excited State 5: Singlet-A 5.0569 eV 245.18 nm f=0.0023 <S**2>=0.000 109 ->114 0.64730 110 ->114 0.20085 111 ->114 0.15428 Excited State 6: Singlet-A 5.2195 eV 237.54 nm f=0.0248 <S**2>=0.000 103 ->114 0.23430 105 ->114 0.14107 107 ->114 0.27800 108 ->114 0.14694 108 ->115 -0.16543 110 ->114 0.14294 -0.11962 110 ->115 112 ->115 -0.30862 113 ->115 0.39669 Excited State 7: Singlet-A 5.3064 eV 233.65 nm f=0.4083 <S**2>=0.000 103 ->115 0.11790 107 ->114 -0.15636 108 ->114 0.59768 110 ->114 0.24441 113 ->115 -0.10697 Excited State 8: Singlet-A 5.3804 eV 230.44 nm f=0.0156 <S**2>=0.000 103 ->114 -0.14918 107 ->114 0.61347 112 ->115 0.15295 113 ->115 -0.22645

5.3975 eV 229.71 nm f=0.0005 Excited State 9: Singlet-A <S**2>=0.000 106 ->114 0.69200 Excited State 10: Singlet-A 5.4768 eV 226.38 nm f=0.0002 <S**2>=0.000 111 ->115 0.21836 112 ->115 0.53351 113 ->115 0.39869

8. Archive for DFT calculations

1[6]b

1\1\GINC-OCTOPUS\FOpt\RB3LYP\6-31G(d,p)\C19H40B9N101\PIOTR\23-Apr-2013 \0\\#P B3LYP/6-31G(d,p) FOpt SCF=Direct Geom=(NoDistance,NoAngle) fche ck\\10-hexyl-CB9-1-(4-heptyloxypyridine), C1\\0,1\B,0.3322175806,-0.04 2049143,-0.0485731575\B,0.0914582288,-0.0367224471,1.7836361309\B,1.91 84386502,0.1099017716,2.0228365983\B,2.1569204045,0.1058604239,0.19069 38517\B,1.037348004,1.1400148623,0.9747077713\C,0.9238356877,2.7286086 824,0.9721490869\C,-0.1601365643,3.3123078119,0.0483921272\C,-0.246959 7844,4.8435067813,0.0894709901\H,-0.3801780768,0.2950045856,-0.9405523 138\H,-0.8255983608,0.303775118,2.4626527299\H,2.5646302096,0.58232806 54,2.9047123698\H,3.0114824639,0.5713285867,-0.4953694779\H,1.89552399 04,3.1613780567,0.6925448709\H,0.7365379287,3.0781499077,1.9979077605 H,0.0263607453,2.9897891584,-0.9850425096\H,-1.1373864219,2.8885991146 ,0.3186766491\H,0.7294616249,5.26923246,-0.1849917639\C,-1.3285222156, 5.4264980481,-0.8282795343\H,-0.4356033173,5.1683183117,1.1233323956\C ,-1.4152907615,6.9572005822,-0.7882275155\C,-2.501764209,7.5288189055, $-1.7043580247 \ \text{H}, -2.3249130101, 7.2506798116, -2.7498142468 \ \text{H}, -3.49227752, -3.4922, -3.492$ 81,7.1495229992,-1.4275837604\H,-2.5388194673,8.6223558489,-1.65345374 69\H,-1.600657665,7.2816664991,0.2450164525\H,-0.4411135903,7.38198523 37,-1.0669587638\H,-1.1411502984,5.1023292407,-1.8623398242\H,-2.30525 11685,5.0023801101,-0.5532945055\C,0.8359156547,-5.9325764484,0.130364 4804\C,2.3504352858,-5.790789145,2.0053550367\B,1.4121390849,-1.453610 7769,-0.2982939393\B,-0.0579630806,-1.5539964718,0.8357340211\B,1.0720 202947,-1.4451057781,2.3112862473\B,2.5417341961,-1.3439582348,1.17673 78445\C,0.7446683735,-4.5628430768,0.1337303815\C,2.2162909683,-4.4181 660234,1.9566163182\N,1.4288400719,-3.8109307466,1.038536916\C,1.31450 96108,-2.3698077989,1.0185541592\C,1.6514978871,-6.5836281224,1.077330 026\0,1.6933734817,-7.9149088938,1.0138586058\C,2.5178296928,-8.654439 7409,1.9446815749\C,2.3677495564,-10.1313338784,1.6209201679\C,3.22288 64772,-11.0135568661,2.5405056259\C,3.0811888056,-12.5093966588,2.2313 265433\C,3.9406653654,-13.4010426364,3.1352438473\C,3.7998481447,-14.8 971424843,2.8284345642\C,4.6647218701,-15.7816255388,3.7311291501\H,5. 7275492966,-15.5366728628,3.6252283683\H,4.3997543609,-15.6509810073,4 .7864014018\H,4.5424908276,-16.841523541,3.4870465938\H,2.7458174009,-15.1890429363,2.9296137391\H,4.0643256655,-15.0766826709,1.7775733426\ H,4.9959202863,-13.1090228556,3.0367347956\H,3.6731754647,-13.21998094 71,4.1860975654\H,2.0260449543,-12.800351995,2.3285182054\H,3.35049842 94,-12.6884119289,1.1810898453\H,4.278853743,-10.7232778422,2.44948692 08\H,2.9446301532,-10.8320783309,3.588049791\H,1.3100871416,-10.405996 6322,1.7096105218\H,2.6511493573,-10.2916860926,0.5740073642\H,3.55946 40113,-8.3271884371,1.8357968617\H,2.1862982951,-8.4350056542,2.967319 7439\H,0.2850951979,-6.5161243476,-0.5967667195\H,2.9933320538,-6.2205 839099,2.7610165199\H,1.5933822167,-1.9996173406,-1.3396396212\H,-1.06 16853779,-2.1799392903,0.7070231755\H,0.9760884995,-1.9878916159,3.365 8461893\H,3.63068743,-1.8025246635,1.3187502704\H,0.1357251741,-4.0089 346484,-0.5672215709\H,2.7287890807,-3.7565849332,2.6416253981\\Versio n=EM64L-G09RevC.01\State=1-A\HF=-1101.9397579\RMSD=6.035e-09\RMSF=3.43 1e-06\Dipole=1.0573847,-7.0842532,0.6494791\Quadrupole=0.4134545,-2.25 87608,1.8453063,-2.8360622,3.6090979,-2.6504184\PG=C01 [X(C19H40B9N101)]\\@

2[6]b

1\1\GINC-OCTOPUS\FOpt\RB3LYP\6-31G(d,p)\C19H42B11N101\PIOTR\14-Aug-201 3\0\\#P B3LYP/6-31G(d,p) FOpt SCF=Direct Geom=(NoDistance,NoAngle) fch eck #P freq(noraman)\\12-hexyl-CB11-1-(4-heptyloxypyridine), C1\\0,1\B ,0.007007,-0.123844,-0.068871\B,-0.055191,-0.052751,1.719652\B,1.72004 3,-0.14444,-0.560572\B,1.617457,-0.025344,2.330096\B,2.717953,-0.08253 9,0.921119\B,2.396014,-1.537317,1.867083\B,2.46073,-1.612963,0.078121\ B,0.679241,-1.52848,2.364604\B,-0.312263,-1.57858,0.8761\B,0.78256,-1. 646361,-0.537502\B,1.201757,0.875152,0.828718\C,1.205431,-2.382961,0.9 61316\N,1.24442,-3.864844,1.009358\C,0.102863,-4.596851,0.893944\C,0.1 21371,-5.968955,0.922764\C,1.343389,-6.652839,1.071949\0,1.288699,-7.9 82684,1.089464\C,2.507146,-8.752138,1.234349\C,2.13198,-10.223825,1.20 0006\C,3.360686,-11.132624,1.342153\C,3.007669,-12.624874,1.302175\C,4 .229362,-13.540776,1.442694\C,2.514832,-5.883724,1.187528\C,2.4287,-4. 507852,1.149957\C,1.245424,2.480476,0.750342\C,-0.087439,3.214837,0.97 3805\C,0.02706,4.739989,0.851389\C,-1.299758,5.48081,1.057001\C,-1.180 197,7.005314,0.939496\C,-2.511428,7.737185,1.135557\C,3.881943,-15.033 907,1.398509\C,5.107316,-15.94181,1.538584\H,-2.936726,7.527735,2.1239 21\H,-2.392027,8.822512,1.048699\H,-3.249401,7.423323,0.388215\H,-0.45 1207,7.368334,1.677007\H,-0.764678,7.26021,-0.045163\H,-2.035362,5.118 88,0.323921\H,-1.710187,5.225904,2.04494\H,0.764233,5.10702,1.580632\H ,0.433295,4.993935,-0.138743\H,-0.833242,2.851228,0.253648\H,-0.485542 ,2.963484,1.96611\H,1.977386,2.853677,1.480983\H,1.644934,2.773709,-0. 231217\H,-0.851339,0.333694,-0.751807\H,-0.960891,0.451866,2.299307\H, 2.093589,0.312437,-1.592291\H,1.920817,0.513383,3.345258\H,3.797947,0. 413754,0.940624\H,3.166948,-2.174516,2.509204\H,3.268208,-2.311846,-0. 444382\H,0.346611,-2.179728,3.300155\H,-1.3217,-2.20314,0.871271\H,0.5 15694,-2.373535,-1.438112\H,-0.807789,-4.027328,0.780569\H,-0.80167,-6 .527367,0.828888\H,3.188721,-8.496176,0.413767\H,2.984871,-8.483993,2. 184788\H,1.417466,-10.425092,2.006739\H,1.614342,-10.433069,0.256471\H ,4.077721,-10.908828,0.540023\H,3.876767,-10.907375,2.285853\H,2.28968 2,-12.848799,2.103257\H,2.490805,-12.848999,0.358714\H,4.948661,-13.31 2624,0.64327\H,4.745177,-13.316595,2.387301\H,5.623799,-15.767482,2.48 9217\H,4.826932,-16.999139,1.502222\H,5.828323,-15.76132,0.733388\H,3. 163245,-15.26169,2.197241\H,3.366724,-15.257179,0.454508\H,3.491062,-6 .333636,1.303933\H,3.300973,-3.877693,1.232554\\Version=EM64L-G09RevC. 01\State=1-A\HF=-1152.9205199\RMSD=9.644e-09\RMSF=3.905e-06\Dipole=0.8 840949, -7.1115604, 0.2722084\Quadrupole=1.9059018, 3.2467112, -5.152613, -4.2062429,1.1253436,-0.061072\PG=C01 [X(C19H42B11N101)]\\@

2[10]b

1\1\GINC-OCTOPUS\FOpt\RB3LYP\6-31G(d,p)\C23H50B11N101\PIOTR\16-Aug-201
3\0\\#P B3LYP/6-31G(d,p) FOpt SCF=Direct Geom=(NoDistance,NoAngle) fch
eck #P freq(noraman)\12-decyl-CB11-1-(4-heptyloxypyridine), C1\\0,1\B
,0.5284988069,1.6474733479,1.8026657927\B,-0.3960891174,0.1335745417,2
.0192934849\B,2.1624145187,1.2214182388,1.2242910991\B,0.6629926242,-1
.2293935584,1.5782841078\B,2.2456554119,-0.5583073661,1.0810521613\B,1
.0702220367,-1.0729251173,-0.1313480242\B,1.9995385508,0.4437502403,-0

.3516065241\B,-0.568361816,-0.6489618102,0.4403355005\B,-0.6416770597, 1.1315100368,0.5883813001\B,0.9371093165,1.8122133632,0.0904349635\B,1 .3493090187,0.1858267712,2.4500263699\C,0.3064042695,0.3810335968,-0.6 333844146\N,-0.1289706589,0.4727305336,-2.0482613622\C,-1.1854730109,1 .2432583336,-2.3976086263\C,-1.5996513924,1.3706308776,-3.7068513223\C ,-0.9045971532,0.6866726461,-4.7197492534\0,-1.195686052,0.7292327844, -6.0179991324\C,-2.3058040635,1.5371393372,-6.4788572236\C,-2.38091708 58,1.4057099091,-7.9904145367\C,-3.536638391,2.2268685139,-8.578568111 3\C,-3.631085692,2.1189701956,-10.105851753\C,-4.7870615604,2.93265044 23,-10.6997058925\C,0.1936195199,-0.109272616,-4.3402882374\C,0.555188 645,-0.1947810911,-3.0191002046\C,1.8346318028,0.1206060896,3.98135590 33\C,2.9859861066,-0.8516180272,4.2895021157\C,3.406773116,-0.85713037 9,5.7649483038\C,4.5512699372,-1.8292976192,6.077337032\C,4.9919469354 ,-1.8124182682,7.5462130537\C,6.131997951,-2.7893899777,7.8594608407\C ,-4.8836859788,2.8327861104,-12.2271141685\C,-6.0427027511,3.645556871 7,-12.8113389971\C,6.5828749213,-2.7593668222,9.3249661584\C,7.7189335 816,-3.7398415434,9.640579332\C,8.1722085894,-3.7057547976,11.10526664 51\C,9.3048346358,-4.6898363169,11.4128941451\H,6.9913719716,-2.563683 7348,7.2116894996\H,5.8174940684,-3.8097944582,7.5973050339\H,5.303075 6024,-0.7936946535,7.8189952651\H,4.1291960817,-2.0449822455,8.1871020 16\H,4.2464617813,-2.8490777348,5.8013473131\H,5.4140968439,-1.5905659 368,5.4387559804\H,3.7048976576,0.1598830469,6.0591522827\H,2.53716679 47, -1.1073172081, 6.3902495674\H, 2.6976435695, -1.8697661182, 3.993130673 \H,3.8575575347,-0.5983167347,3.6708373493\H,2.133294022,1.1286515368, 4.3028551992\H,0.976038738,-0.1404759812,4.6166163022\H,0.3166252005,2 .6155260556,2.4591005491\H,-1.2603357724,0.0343204665,2.8292432549\H,3 .1184333914,1.8847577197,1.4674181304\H,0.5572680177,-2.3091987104,2.0 63811798\H,3.2604033302,-1.162057754,1.2086518688\H,1.1826478949,-1.95 08454631,-0.924191332\H,2.7055569217,0.5591559804,-1.300772795\H,-1.50 16444739, -1.2305211756, -0.0077210257\H, -1.646116647, 1.6979669149, 0.304 6854117\H,0.9552626416,2.7913592295,-0.5824205772\H,-1.681968654,1.750 3684545,-1.5831460528\H,-2.4522521626,2.0017059031,-3.9165603179\H,-3. 2265859093,1.1797084004,-6.0015087371\H,-2.1354543714,2.5783854732,-6. 178699583\H,-1.4271041725,1.7326323862,-8.4208781979\H,-2.5000156283,0 .3466482461,-8.2474571016\H,-4.4853778359,1.8968401371,-8.1329276311\H ,-3.4175247995,3.2825758929,-8.2975174919\H,-2.6834745912,2.452067447, -10.5513764742\H,-3.745368653,1.063092702,-10.3877488671\H,-5.73442328 36,2.5972268037,-10.2541130582\H,-4.6744307163,3.9878652977,-10.412614 5496\H,-5.9428384148,4.7095203057,-12.5687760578\H,-6.0836488845,3.556 0686514,-13.9013778248\H,-7.0055079047,3.305575487,-12.4135468017\H,-3 .9377509373,3.1705700198,-12.6715789131\H,-4.9937273687,1.778283931,-1 2.5140650667\H,0.7540533552,-0.6492269895,-5.093272917\H,1.3905744364, -0.7894492391,-2.6829334633\H,5.7229362102,-2.9804524278,9.9735822181\ H,6.901644671,-1.73974739,9.5851166339\H,7.3999281824,-4.7604822514,9. 3844368636\H,8.5789749262,-3.5215380765,8.9909759321\H,8.4931820774,-2 .6865801645,11.3605431024\H,7.3127749514,-3.922706592,11.7543535039\H, 9.6039456517, -4.6426961715, 12.4652528482\H, 9.0019120975, -5.7213001115, 11.1993319859\H,10.191916045,-4.4758766379,10.8056117279\\Version=EM64 $\label{eq:l-G09RevC.01} \\ \texttt{State=1-A} \\ \texttt{HF=-1310.1865699} \\ \texttt{RMSD=4.215e-09} \\ \texttt{RMSF=6.042e-06} \\ \texttt{RMSF=6.042e-06} \\ \texttt{RMSD=4.215e-09} \\ \texttt$ Dipole=-2.6847529,0.9673891,-6.6306071\Quadrupole=-4.989633,-16.22047, 21.210103,-8.0898656,23.0010004,-10.966913\PG=C01 [X(C23H50B11N101)]\\ @

9. References

J. Pecyna, B. Ringstrand, S. Pakhomov, A. G. Douglass, P. Kaszynski *in preparation*.

- 2 B. Ringstrand, P. Kaszynski, A. Januszko, V. G. Young, Jr. J. Mater. Chem. 2009, **19**, 9204.
- 3 S. Wang, A. Zhang *Org. Prep. Proc. Int.* 2008, **40**, 293.
- 4 C. D. Beard, K. Baum, V. Grakauskas J. Org. Chem. 1973, **38**, 3673.
- 5 C. Aubert, J.-P. Bégué Synthesis 1985, 759.

6 H. Takeuchi, H. Ōya, T. Yanase, K. Itou, T. Adachi, H. Sugiura, N. Hayashi *J. Chem. Soc. Perkin Trans.* 2 1994, 827.

7 B. Ringstrand, A. Jankowiak, L. E. Johnson, P. Kaszynski, D. Pociecha, E. Górecka *J. Mater. Chem.* 2012, **22**, 4874.

- 8 M. A. Fox, J. A. H. MacBride, R. J. Peace, K. Wade J. Chem. Soc., Dalton Trans. 1998, 401.
- 9 W. Maier, G. Meier Z. Naturforsch. 1961, **16A**, 262.
- 10 S. Urban, in *Physical Properties of Liquid Crystals: Nematics*, (Eds.: D. A. Dunmur, A. Fukuda, and
- G. R. Luckhurst) IEE, London, 2001, pp 267-276.
- 11 B. Ringstrand, P. Kaszynski J. Mater. Chem. 2011, **21**, 90.
- 12 R. Dabrowski, J. Jadzyn, S. Czerkas, J. Dziaduszek, A. Walczak *Mol. Cryst. Liq. Cryst.* 1999, **332**, 61.