Electronic Supporting Information (ESI) for

Schiff base derivatives containing heterocycle with

aggregation-induced emission and recognition ability

Gang Liu^a, Mingdi Yang^{a, b,} *, Lianke Wang^a, Jun Zheng^c, Hongping Zhou^{a,} *, Jieying Wu^a, Yupeng Tian^a ^a College of Chemistry and Chemical Engineering, Anhui University Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei 230601, P. R. China. ^b School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China. ^c Center of Modern Experimental Technology, Anhui University, Hefei 230039, P. R. China. *Corresponding author. Corresponding author. "Fax: +86-551-63861279, Tel: +86-551-63861279; "Fax: +86-551-63828106, Tel: +86-551-63828150. *E-mail address*: zhpzhp@263.net
Table S1 Spectroscopic Properties of dye 1–3.
Table S2 Fluorescence quantum yield and fluorescence lifetime of dye 1-3 in different Table S3 Particle size distributions of dye 1-3 in THF/water mixtures with different Fig. S2 UV absorption spectra changes of dve 1-2 (1.0×10⁻⁵ mol L⁻¹) in THF/water mixtures with Fig. S4 ¹H NMR spectrum of 5-nitro-2-triphenylaminebenzimidazole5 Fig. S12 MS spectrum of dye 1......9 **Fig. S13.** ¹H NMR spectrum of **dye 2.**10 **Fig. S14** ¹³C NMR spectrum of **dye 2**.....10

Compounds	Solvents	$\lambda_{\max}^{[a]}$	$\lambda_{\max}^{[b]}$	$\Delta \mathrm{v}^{[\mathtt{c}]}$
	Benzene	376	428	3231
	Dichloromethane	376	430	3340
dvo 1	THF	371	436	4018
uye I	EE	369	434	4059
	Acetonitrile	371	434	3913
	DMF	373	435	3821
	Benzene	372	429	3572
	Dichloromethane	372	430	3626
2	THF	376	437	3712
aye 2	EE	367	432	4100
	Acetonitrile	371	439	4175
	DMF	374	437	3855
	Benzene	377	424	2940
	Dichloromethane	376	425	3066
dye 3	THF	376	432	3448
	EE	372	427	3463
	Acetonitrile	371	445	4482
	DMF	375	447	4295

Table S1Spectroscopic Properties of dye 1–3.

^[a] Absorption peak position in nm $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$. ^[b] Peak position of SPEF in nm $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$, excited at the absorption maximum. ^[c] Stokes shift in cm⁻¹.

Table S2 Fluorescence quantum yield and fluorescence lifetime of **dye 1-3** in different water fractions.

	Water fraction (v%)	$ au_1^a(ns)$	$A_1{}^b$	$ au_2^a(\mathbf{ns})$	A_2^b	<\alpha >c(ns)	χ^2	${\it I} \!$
dye 1	0	1.53	0.88	3.13	0.12	1.73	1.18	<0.1

	60	2.50	0.84	4.58	0.16	2.84	1.13	39.03
	90	1.79	0.36	3.51	0.64	2.90	1.20	22.33
dye 2	0	1.55	0.88	3.04	0.12	1.73	1.07	<0.1
	70	2.49	0.90	4.99	0.10	2.75	0.80	47.53
	90	1.53	0.29	3.40	0.71	2.86	0.81	20.55
dye 3	0	1.49	0.88	3.94	0.12	1.78	1.39	<0.1
	80	2.62	0.84	5.12	0.16	3.02	1.15	42.2
	90	2.15	0.24	3.55	0.76	3.21	0.97	24.6

^{*a*}Fluorescence lifetime. ^{*b*}Fractional contribution. ^{*c*}Weighted mean lifetime. ^{*e*}Fluorescence quantum yield measured by using an integrating sphere.

Table S3	Particle si	ize distributions	of dye	1-3 in	n THF/water	mixtures	with	different
water frac	tions.							

	dye 1- 50%	dye 1- 60%	dye 1-90%
Average particle size (nm)	211	249	391
Particle diameter (nm)	23~2148	189~314	701802
	dye 2- 10%	dye 2-20%	dye 2- 30%
Average particle size (nm)	-	-	1213
Particle diameter (nm)	-	-	29~3414
	dye 2- 40%	dye 2- 50%	dye 2- 60%
Average particle size (nm)	627	499	383
Particle diameter (nm)	16~1874	22~1100	10~325
	dye 2-70%	dye 2-80%	dye 2- 90%
Average particle size (nm)	193	289	659
Particle diameter (nm)	95~378	40~1325	26~1522
	dye 3-60%	dye 3-80%	dye 3- 90%
Average particle size (nm)	268	216	261

Fig. S1 PL spectra of dye 1-3 $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ in six organic solvents.

Fig. S2. UV absorption spectra changes of **dye 1-2** (1.0×10^{-5} mol L⁻¹) in THF/water mixtures with different water fractions (f_w).

Fig. S3 PL spectra of dye 1-3 in THF/water mixtures with different water fractions (f_w) and time.

Fig. S4 ¹H NMR spectrum of 5-nitro-2-triphenylaminebenzimidazole.

Fig. S5¹³C NMR spectrum of 5-nitro-2-triphenylaminebenzimidazole.

Fig. S6 MS spectrum of 5-nitro-2-triphenylaminebenzimidazole.

Fig. S7 ¹H NMR spectrum of 5-amino-2-triphenylaminebenzimidazole.

Fig. S8 ¹³C NMR spectrum of 5-amino-2-triphenylaminebenzimidazole.

Fig. S9 MS spectrum of 5-amino-2-triphenylaminebenzimidazole.

Fig. S10 ¹H NMR spectrum of dye 1.

Fig. S11 ¹³C NMR spectrum of dye 1.

Fig. S12 MS spectrum of dye 1.

Fig. S13 1H NMR spectrum of dye 2.

Fig. S14 13C NMR spectrum of dye 2.

Fig. S15 MS spectrum of dye 2.

Fig. S16 ¹H NMR spectrum of **dye 3**.

Fig. S17 ¹³C NMR spectrum of dye 3.

Fig. S18 MS spectrum of dye 3.