Electronic Supplementary Information for: Atomic Layer Deposition of B₂O₃/SiO₂ Thin Films and Their Application in an Efficient Diffusion Doping Process

Woo-Hee Kim,^{*a,b*} Il-Kwon Oh,^{*a*} Min-Kyu Kim,^{*a*} Wan Joo Maeng,^{*a*} Chang-Wan Lee,^{*a*} Gyeongho Lee,^{*a*} Clement Lansalot-Matras,^{*c*} Wontae Noh,^{*c*} David Thompson,^{*d*} David Chu^{*d*} and Hyungjun Kim^{*a*,*}

^a School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Korea

^b Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, California 94305, United States

^c Air Liquide Korea Co., Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

^d Applied Materials, 974 E. Arques Avenue, M/S 81280, Sunnyvale, California 94085, United States

*Authors to whom correspondence should be addressed.

E-mail: hyungjun@yonsei.ac.kr. Telephone: +82-2-2123-5773; Fax: +82-2-313-2879.

Figure S1. Detailed precursor information for ALD of SiO_2 (upper part) and B_2O_3 (lower part).

(2) Conformality of ALD SiO₂ film in a via hole structure

Figure S2. Cross-sectional transmission electron microscopy (X-TEM) images for 15 nm-thick ALD SiO₂ film deposited by using SAM-24 and O₂ plasma in a nanoscale via hole (aspect ratio of 5:1).

(3) Formation of interface dipole layers by oxygen areal density model¹⁾

Table S1. Summary of structural parameters of SiO₂ and B₂O₃, including density, volume of unit structure containing one oxygen atom (V_u), and normalized areal oxygen density (σ/σ_{SiO2}).

Oxides	SiO ₂	B_2O_3
Density (g/cm ³)	2.2	2.55(Trigonal)/3.11(Monoclinic)
Unit structure	Si _{1/2} O	B _{2/3} O
V_u (Å ³)	22.7	15.1(Trigonal)/12.4(Monoclinic)
σ/σ_{SiO2}	1.00	1.31(Trigonal)/1.49(Monoclinic)

Figure S3. Schematic of the formation of interface dipole layers due to the oxygen transfer, in the form of negatively charged ion, creating the positively charged oxygen vacancies in higher σ oxide region, and negatively charged center in lower σ oxide region.

(4) Preparation of B-doped SiO₂ films with different B/(B+Si) composition

Figure S4. Schematic of the atomic layer deposition (ALD) supercycle, composed of n repetitions of alternating B_2O_3 and SiO_2 growth cycles.

Reference

(1) Kita, K.; Toriumi, A., Origin of electric dipoles formed at high-k/SiO₂ interface.

Appl. Phys. Lett. 2009, 94, 132902-132902-3.