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EXPERIMENTAL SECTION

Materials

Mesophase pitch (AR Resin; ARS) was obtained from Mitsubishi chemical company, Japan.1 The 

ARS is an aromatic compound with a black colored pellet like appearance and has a softening point 

of 275 to 295oC. The solvent N, N-dimethyl acetamide (DMAc) was obtained from Sigma-Aldrich 

with available highest purity.  An aromatic polyimide (PI), more precisely benzophenone-3,3´,4,4´-

tetracarboxylic dianhydride 5(6)-amino-1-(4‘-aminophenyl)-1,3-trimethylindane) (Matrimid 5218), 

was obtained from Huntsman Advanced Materials, USA. The alloy for infiltration 

(Sn95.5Ag3.8Cu0.7) was obtained from Indium Corporation, USA.

Methods: 

N, N-dimethyl acetamide (DMAc) extraction: ARS powder was dispersed in a DMAc solvent and 

stirred for 24h at room temperature. The top layer was decanted in to a beaker and highly soluble 

fraction was collected by further centrifuging at 2000 rpm for 2 min. The DMAc solvent was 

subsequently removed and soluble mesophase pitch portion (s-ARS) was collected after drying. 
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Electrospinning process:  A homogeneous s-ARS and PI mixture was prepared by stirring a 1.5g 

of s-ARS in 8g of DMAc for 12 to 24h, followed by addition of 1.5g PI and stirring for additional 

24h. Finally obtained high viscous liquid was loaded into a 20 ml plastic syringe equipped with a 

21G stainless steel cannula. For the electrospinning a voltage of 18 kV was applied to the cannula 

and the solution was feed at a rate of 2 ml/h. Grounded aluminum foils were used as collectors for 

the deposition of the resulting black electrospun fiber mats.  The distance between the collector and 

cannula tip was 20 cm. 

Carbonization process: The samples obtained from the electrospinning were pre heated in an air 

atmosphere to 310oC with a 1oC/min heating rate. After 20 min stabilization, the sample was cooled 

to room temperature. The stabilized fiber mat was then carbonized under N2 at 1000oC with a 

heating rate of 1oC/min using a quartz tube furnace. After 120 min carbonization, the sample was 

cooled to room temperature under N2 flow. 

Sputter coating of carbon fibers: Prior to liquid phase infiltration of the alloy, and in order to 

enhance the wettability of the fibers, the CF networks were sputter coated with thin layers of 

titanium (Ti) and gold (Au). For the sputtering procedure, a standard metal sputtering system (FHR, 

Anlagenbau GmbH) was used at a chamber base pressure of 2*10E-7 mbar. The sputtering rate and 

time was adjusted to result in a thickness of approximately 120 nm and 60 nm for the deposited Ti 

and Au layer (thickness for deposition on a flat substrate). To enable coverage on both sides of the 

fibers the sputtering procedure was carried out twice, once from each side of the mesh. 

Alloy infiltration: The CFs were infiltrated by pressure assisted liquid infiltration utilizing a 

system with custom design, and the process has been reported before.2   Briefly, the CF mat is first 

placed in a cavity which is evacuated via a vacuum gate. Keeping the mold at elevated temperature, 

liquid alloy is let into the mold, surrounding the CFs from both sides. High pressure (30MPa) is 
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then applied to the liquid alloy to allow infiltration into the porous CF structure. Before cooling to 

allow solidification, the composite thickness is adjusted via a compressing piston. 

Characterization techniques: Infrared spectra were collected in an FTIR spectrophotometer 

(Spectrum two, Perkin–Elmer,) with UATR2 unit. Raman spectra of CF were collected on a 

standard Raman spectrometer (XploRA, Horiba Jobin Yvon) using a 100× objective lens with 638 

nm laser excitation. Results are reported from the average of three scans to improve the signal-to-

noise ratio. The surface morphology of the samples was characterized by using a scanning electron 

microscope (SEM) (Supra 60 VP, Carl Zeiss). The microstructure of the single fibers were observed 

by transmission electron microscope (TEM). In-plane thermal conductivity measurements for CF 

mats were performed using transient plane source equipment (Hot disk, TPS2500; (ISO 22007-2)). 

A slab module with a diameter of 4 mm was utilized and sandwiched between the samples being 

measured. Styrofoam was used as an insulator to minimize heat losses to the ambient. 

The in-plane and through-plane thermal conductivity measurement of CF-TIM were conducted 

using xenon flash equipment (Nanoflash LFA447, Netsch) operating according to ASTM E1461. 

For through-plane measurements, samples were prepared by sandwiching composite preforms 

between two 8x8 mm electroless nickel and gold (ENIG) coated 1 mm copper plates. To ensure 

proper wetting of the surfaces and minimize the contact resistances, the stacked structure was 

subjected to reflow at elevated temperature and above the melting point of the alloy while being 

subjected to a 200 kPa compressive pressure. 

For the in-plane measurements, a standard in-plane fixture from the instrument manufacturer for the 

xenon flash instrument, was used. The in-plane fixture measurements are well suited for foils and 

thin films. The working principle is as follows: The fixture allows heat from the flash to be 

adsorbed only in the center on one side of the circular foil sample. The temperature increase of the 

sample is then detected on the opposite side of the foil at well-defined radius through openings in 

the fixture. For thin samples, the rise time for the temperature will be dependent on the in-plane 
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thermal diffusivity. The in-plane thermal diffusivity is then related to the in-plane thermal 

conductivity through specific heat capacity and density. The heat capacity of the CF-TIM was 

estimated by measuring the density of the composite, and from this acquiring the carbon and alloy 

weight ratios in the composite. The specific heat capacity was then calculated by using reference 

values for the respective material components.

Thermal reliability characterization: Thermal cycling of CF-TIM samples, mounted and 

reflowed between two 8x8 mm electroless nickel and gold (ENIG) coated 1 mm copper plates, was 

carried out in an environmental chamber (924E, Despatch) by adopting global standards for 

microelectronics industry (JEDEC standard) test condition I (soak mode 2), from -40°C to 115°C 

with 2 cycles/hour and 5 min soak time with heating rate of 15°C/min.

Supporting Fig 1.  SEM images of electrospun s-ARS-PI fiber (a-b), and stabilized s-ARS-PI fiber 
(c-d). 
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Supporting Fig.2: SEM images of CFs obtained from carbonization at 1000oC (a-b) and  (c) FTIR-
ATR spectrum of electrospun pristine PI fiber film, electrospun s-ARS-PI fiber, stabilized s-ARS-
PI fiber, and CFs (d) Raman spectra of CF recorded using 638nm laser excitation
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