Electronic Supplementary Information

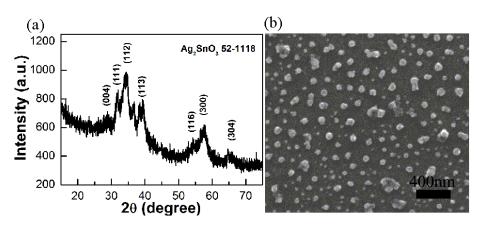
Enhanced gas-sensing response by gamma ray irradiation: Ag/Ag₂SnO₃ nanoparticle-based sensor to ethanol, nitromethane and acetic acid⁺

Kui Yin,^a Fan Liao,^a Yan Zhu,^a Aimin Gao,^{b,*} Tao Wang,^a Mingwang Shao^{a,*}
^aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbonbased Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
^bRadiation Technology Research Institute, Suzhou CNNC Huadong Radiation Co., Ltd, Soochow University, Suzhou, Jiangsu 215123, P. R. China

1. Hydrothermal Process to Na₂Sn(OH)₆.

To obtain Ag_2SnO_3 , $Na_2Sn(OH)_6$ needed to be synthesized firstly. In a typical procedure, 0.263 g SnCl₄ and 0.375 g PVP were simultaneously dissolved in 50 mL ethanol/water (4:1, by V/V) solution. Then 10 mL NaOH (12.5 M) aqueous solution was added dropwise under vigorous stirring. The resulting slurry was transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL. The hydrothermal synthesis was performed at 180 °C for 24 h; then the vessel was cooled to room temperature. The resultant $Na_2Sn(OH)_6$ was cleaned by ethanol and collected by centrifugation.^{S1,S2}

2. The synthesis of Ag₂SnO₃.

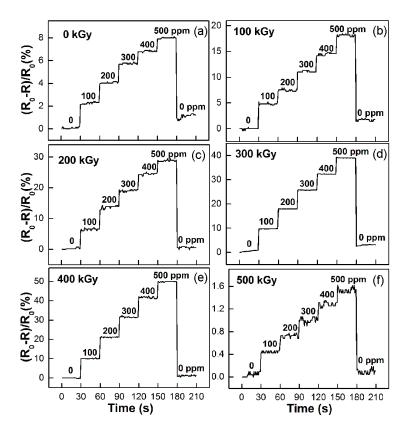

Herein, the two-step process plays an important role in the synthesis of Ag_2SnO_3 , which is based on the following reactions.

$$SnCl_4 + 4NaOH \rightarrow Sn(OH)_4 + 4NaCl$$
 (1)

$$Sn(OH)_4 + 2NaOH \rightarrow Na_2Sn(OH)_6$$
 (2)

$$Na_2Sn(OH)_6 + 2AgNO_3 \rightarrow Ag_2SnO_3 + 2NaNO_3 + 3 H_2O$$
(3)

A hydrothermal reaction was carried out in an ethanol/water solution to obtain crystalline Na₂Sn(OH)₆. The following reaction with the AgNO₃ aqueous solution resulted in a brown powdery product that can be confirmed as Ag₂SnO₃ by the XRD pattern. The reaction is basically a diffusion-controlled ion-exchange process in which Ag⁺ ions in the AgNO₃ aqueous solution replace the Na⁺ of Na₂Sn(OH)₆ as the reaction proceeds, driven by the ion concentration gradient. The ion-exchange reaction was completed within 50 min, and then the resultant Ag₂SnO₃ was filtered, washed with ethanol, and dried at 60 °C.



3. The XRD pattern and SEM image of Ag₂SnO₃.

Fig. S1 XRD pattern and SEM image of Ag₂SnO₃ nanoparticles.

Fig. S1a shows the XRD pattern of Ag_2SnO_3 , which is in accordance with the standard data (JCPDS. No 52-1118). From the XRD pattern, it could be found that the crystallinity of Ag_2SnO_3 is not good.

Scanning electron microscopy (SEM) images were taken on a FEI-quanta 200 scanning electron microscope with accelerating voltage of 30 kV. The SEM image (Fig. S1b) shows that Ag₂SnO₃ is agglomerated each other with the average diameter of 100 nm.

4. The gas sensitivity of Ag/Ag₂SnO₃ to CH₃NO₂.

Fig. S2 Response of six different gamma ray dose irradiated sensors upon exposure to various concentrations of CH₃NO₂.

5. Gas responses of six irradiated products to CH₃NO₂.

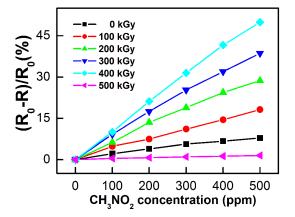


Fig. S3 The relationship between gas responses of six irradiated products and concentration of CH_3NO_2 .

6. The gas sensitivity of Ag/Ag₂SnO₃ to CH₃COOH.

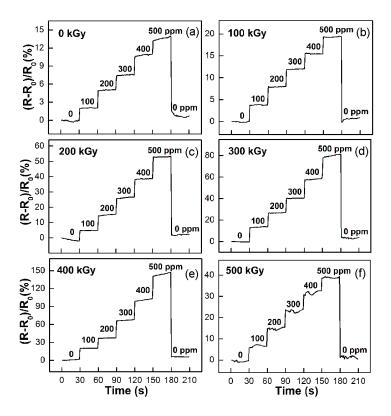


Fig. S4 Response of six different gamma ray dose irradiated sensors upon exposure to

various concentrations of CH₃COOH.

7. The Brunauer-Emmett-Teller (BET) specific surface area of the irradiated products

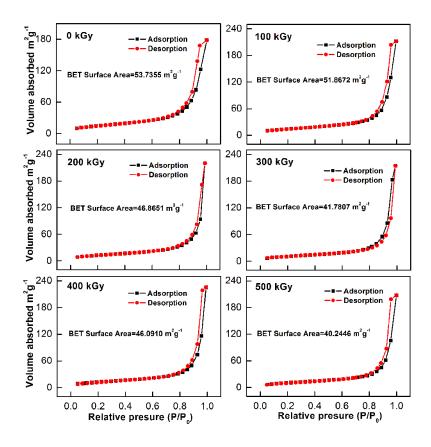


Fig. S5 The BET specific surface area of the products with different irradiation doses.

S1 Y. W. Tang, Y. Jiang, Z. Y. Jia, B. H. Li, L. J. Luo and L. Xu, *Inorg. Chem.*,
2006, 26, 10774.

S2 K. Yin, M. W. Shao, Z. S. Zhang and Z. Q. Lin, *Mater. Resear. Bull.*, 2012, 47, 3704.