Novel Dithiols as Capping Ligands for CdSe Quantum Dots: Optical Properties and Solar Cell Applications

Avvaru Praveen Kumar,[†] Bui The Huy,^{†,‡} Begari Prem Kumar,[†] Jong Hwa Kim,[†] Dao Van Duong,[§]Ho-Suk Choi,[§] and Yong-Ill Lee^{†*}

[†]Department of Chemistry, Changwon National University, Changwon 641-773, Korea.

*Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 2 Hung Vuong, Nhatrang, Vietnam.

[§]Department of Chemical Engineering, Chungnam National University, Daejeon, Korea.

Supporting Information

Scheme S1. Synthesis of dithiols.

Figure S2. FT-IR spectra of DT-capped CdSe QDs.

Figure S3. TGA curves of CdSe and DT-capped CdSe QDs.

Figure S4. The temporal evolution time of the absorption spectra of DT-capped CdSe QDs.

Figure S5. Comparison of PL intensities of CdSe and DT-capped CdSe QDs.

Figure S6. Photocurrent density-voltage curves of QD solar cells containing DT-capped CdSe.

Scheme S1. Synthesis of dithiols.

Figure S2. FT-IR spectra of DT-capped CdSe QDs.

Figure S3. TGA curves of CdSe and DT-capped CdSe QDs.

Figure S4. The temporal evolution time of the absorption spectra of DT-capped CdSe QDs.

Figure S5. Comparison of PL intensities of CdSe and DT-capped CdSe QDs.

Figure S6. Photocurrent density-voltage curves of QD solar cells containing DT-capped CdSe.