Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting Information

New Dithienyl-Diketopyrrolopyrrole-based Conjugated Molecules entailing Electron Withdrawing Moieties for Organic Ambipolar Semiconductors and Photovoltaic Materials

Chenmin Yu, Zitong Liu,* Yang Yang, Jingjing Yao, ZhengxuCai, Hewei Luo, Guanxin Zhang, Deqing Zhang* Beijing National Laboratory for Molecular Sciences, OrganicSolids Laboratory, Institute of Chemistry, Chinese Academyof Sciences, Beijing 100190, China. E-mail: dqzhang@iccas.ac.cn

1.	TGA and DSC Analysis2
2.	UV-vis Absorption Spectra of DPPBZ2
3.	Output Curves of OFETs based on DPPBT and DPPTT2-3
4.	Transfer and Output Curves of OFET based on DPPBZ
5.	XRD Patterns and AFM Height Images of OFETs3-4
6.	UV-vis Absorption Spectra of OPVs5
7.	XRD Patterns of OPVs5
8.	¹ H-NMR, ¹³ C-NMR and TOF Spectra

1. TGA and DSC Analysis

Figure S1. TGA (left) and DSC (right) curves of **DPPBT**, **DPPTT** and **DPPBZ** (heating rate: 10 °C/min. from 30 °C to 550 °C under nitrogen atmosphere).

2. UV-vis Absorption Spectra of DPPBZ

Figure S2. UV-vis absorption spectra of **DPPBZ** in CHCl₃ $(1.0 \times 10^{-5} \text{ M})$ solution (a) and its thin film (b).

3. Output Curves of OFETs based on DPPBT and DPPTT

Figure S3. The output characteristics of OFETs based on **DPPBT** and **DPPTT** after thermal annealing at 100 °C.

4. Transfer and Output Curves of OFET based on DPPBZ

Figure S4. The transfer and output characteristics of OFET based on thin film of **DPPBZ** after thermal annealing at 100 $^{\circ}$ C. V_{DS} for transfer characteristic is -100 V, respectively.

5. XRD Patterns and AFM Height Images of OFETs

Figure S5. In-plane and out-of-plane XRD patterns of as-prepared thin films of **DPPBT**, **DPPTT** and **DPPBZ** and those after thermal annealing at 100 °C.

Figure S6. AFM height images (2.0 μ m × 2.0 μ m) of as-prepared thin film of **DPPBZ** and that after annealing at 100 °C.

6. UV-vis Absorption Spectra of OPVs

Figure S7. Normalized UV-vis absorption spectra of thin films of **DPPBT**:PC₇₁BM (w/w, 1:1) and **DPPTT**:PC₇₁BM (w/w, 1:1).

7. XRD patterns of OPVs

Figure S8. In-plane and out-of-plane XRD patterns of thin films of **DPPBT**:PC₇₁BM (w/w, 1:1) and **DPPTT**:PC₇₁BM (w/w, 1:1).

8. ¹H-NMR, ¹³C-NMR and TOF Spectra

S7

S8

S9

Intens. [a.u.] 1235,4 1000 800 DPPTT 600 400 200 0 250 2500_{m/z} 500 750 1000 1500 1750 1250 2000 2250 797 779 761 478 2297 2263 2263 2263 2209 2209 836 -3.940 -3.926 -3.908 816 781 626 219 Curred NAME EXPNO PROCNO F2 - J Date_ Time INSTRI PROBAL PROBAL SOLVEN NS DS SWH FIDRE: AQ BG DW DE TE DI TDQ DPPBZ ſ SF01 NUC1 P1 P1W1 F2 -S1 SF WDW S58 LB G8 PC 38.58 26.23 2.00 11 8.19 4.27 1.99 1.98 1.98 2.05 4 9 5 3 2 1 0 ppm 8 6 7 Scale: 0.4013 ppm/cm, 160.6 Hz/cm

MALDI-TOF,CCA,YU-1,2012,10,23

