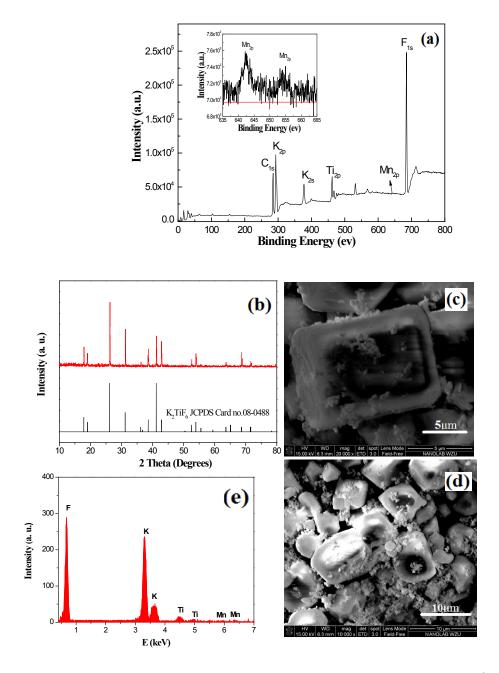

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting Information


Optimized photoluminescence of red phosphor K₂TiF₆:Mn⁴⁺

synthesized at room temperature and its formation mechanism

Lifen Lv, Zhen Chen, Guokui Liu, Shaoming Huang, and Yuexiao Pan*

Figure S1. Photographs of the phosphor samples (a,b) KTFM-1, (c,d) KTFM-2, and (e,f) KTFM-3 (prepared according to the detailed experimental process as described in Table 1) under (a,c,e) visible light and (b,d,f) 365 nm UV light excitation, respectively.

Figure S2. (a) X-ray photoelectron spectroscopy (XPS) of $K_2TiF_6:Mn^{4+}$ prepared by from Ti(OC₄H₉)₄. (b) XRD, (c,d) SEM images, and (e) EDS spectrum of red phosphor $K_2TiF_6:Mn^{4+}$ prepared from TiO₂.

Note: XPS spectrum was obtained with a PHI 5000 (ULVAC-PHI, Chigasaki, Kanagawa, Japan) system equipped with a 450 W monochromatic Al K α X-ray under ultra-high vacuum.

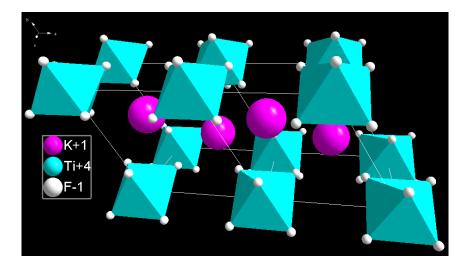
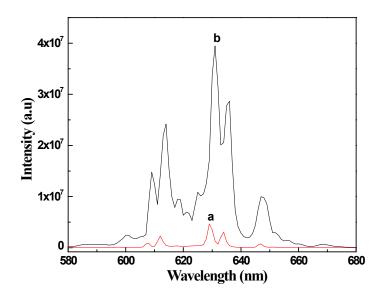



Figure S3. The structure projection of $K_2 TiF_6$ with hexagonal structure plotted by software Diomand 3.0.

Figure S4. Emission spectra of red phosphors $K_2TiF_6:Mn^{4+}$ prepared by etching (a)TiO₂ and (b) Ti(OC₄H₉)₄, respectively. Note: all the other experimental parameters are identical for both synthetic techniques.

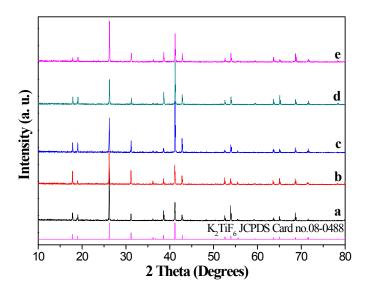


Figure S5. XRD patterns of red phosphors $K_2TiF_6:Mn^{4+}$ prepared by wet chemical etching at room temperature with concentration of KMnO₄ at (a) 0, (b) 5, (c) 10, (d) 25, (e) 30, (f) 60 mmol.L⁻¹.

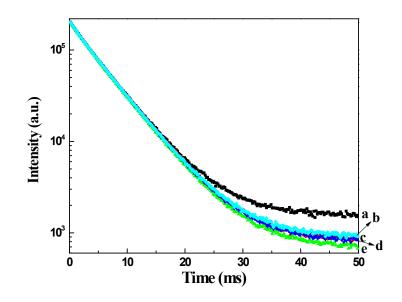
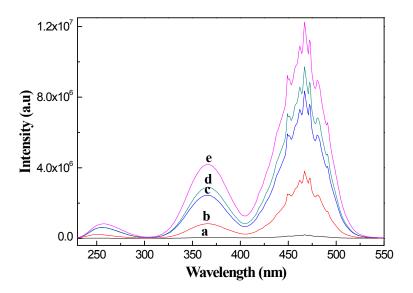



Figure S6. Decay curves of red phosphors $K_2TiF_6:Mn^{4+}$ prepared by wet chemical etching at room temperature with concentration of KMnO₄ at (a) 0, (b) 5, (c) 10, (d) 25, (e) 30, (f) 60 mmol.L⁻¹.

Figure S7. Excitation spectra (monitored at 631 nm) of red phosphors $K_2TiF_6:Mn^{4+}$ prepared by wet chemical etching at room temperature with concentration of HF at (a) 5, (b) 10, (c) 20, (d) 30, (e) 40 wt.%.

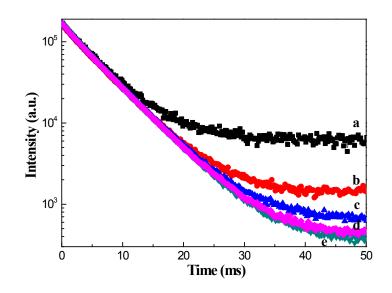
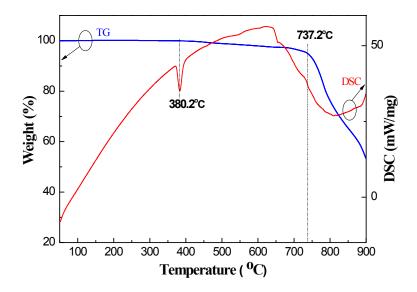
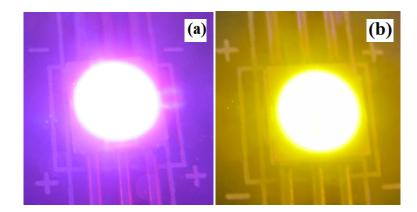




Figure S8. Dependence of decay of 631 nm emissions of red phosphor $K_2TiF_6:Mn^{4+}$ (excited at 467 nm) prepared with concentration of HF at (a) 5, (b) 10, (c) 20, (d) 30, (e) 40 wt.%.

Figure S9. Thermogravimetrics (TG) and different scanning calorimeter (DSC) graphs of as synthesized $K_2TiF_6:Mn^{4+}$ under N_2 atmosphere. The thermal stability the red phosphor behavior of $K_2TiF_6:Mn^{4+}$ is investigated by thermogravimetrics analysis and different scanning calorimeter (DSC; Netzsch STA 449 C, at a heating rate of 10K/min). (The data are repeatable).

Figure S10. Photographs of (a) purple LED fabricated with $K_2TiF_6:Mn^{4+}$, and (b) "warm" white LED fabricated with $K_2TiF_6:Mn^{4+}$ and YAG:Ce³⁺ driven at under 60mA current. The LEDs were examined by a LEE300E UV-Vis-near IR spectrophotocolorimeter (Everfine photo-E-Infor Co., China).