Electronic Supplementary Information

An Acid-free Medium Growth of Rutile TiO₂ Nanorods

Arrays and Their Application in Perovskite Solar Cells

Bing Cai^{ab}, Dong Zhong^b, Zhou Yang^b, Baokun Huang^b, Su Miao^b, Wen-Hua Zhang^{*b}, Jieshan Qiu^{*a} and Can Li^b

- ^a Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, China. E-mail: jqiu@dlut.edu.cn
- ^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China. E-mail: whzhang@dicp.ac.cn

Experimental Section

*Preparation of TiO*₂ *compact layer:* FTO glasses were cleaned in ultrasonic bath of water, ethanol, acetone and 2-propanol in sequence, and treated in an O₂-plasma cleaner. The TiO₂ compact layer was dip-coated on an FTO substrate with a TiO₂ colloidal solution as report.¹³ 1.8 mL DI water in 50 mL ethanol was added dropwise into a mixture solution containing 34 mL of tetrabutyl titanate and 8.3 ml of diethanolamine in 105 mL absolute ethanol. After dip-coating, the film was annealed at 500 °C for 30 min, providing a thickness of ~60 nm.

*Hydrothermal synthesis of of TiO*₂ *NRs:* Typically, the hydrothermal solution contains 33.0 mM (10.0 μ L/ml) titanium (IV) tetraisopropoxide (TTIP), 100 mM Na₂EDTA and 2.5 vol.% glycerol in DI water. Firstly, 0.2 ml TTIP was mixed with 0.5 ml glycerol. After stirring for 5 min, 19.5 ml DI water and 0.745 g Na₂EDTA were added into the mixture, followed by heating at 70 °C for 1 hour. The mixed solution slowly turned into transparency at last, and was then transferred to a sealed container at 190 °C for several hours reaction. After cooling down to room temperature, the NR sample was rinsed with ethanol and DI water. Prior to use, the TiO₂ NR films was annealed at 450 °C for 30 min in the air. For solar cell application, the TiO₂ NRs with different length were prepared by adjusting the initial Na₂EDTA concentration in the hydrothermal solution.

Perovskite solar cell fabrication: PbI_2 (0.554 g/ml in N, N-dimethyl formamide) was spin-coated onto TiO₂ NR film at 6500 rpm. After annealing for 30 min on a 70 °C hotplate, the PbI₂-coated film was dipped into a 2-propanol solution containing 8

mg/ml CH₃NH₃I for about 80 min. During this period, the film turned from bright yellow to dark brown, indicating the formation of CH₃NH₃PbI₃ perovskite. Then the sample was rinsed with 2-propanol and dried on a 70 °C hotplate. A spiro-MeOTAD solution was prepared by dissolving 90 mg of spiro-MeOTAD in 1.2 ml of chlorobenzene, to which 35.9 μ l of 4-tert-butyl pyridine and 27.3 μ l of lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) solution (520 mg Li-TFSI in 1 ml acetonitrile, Sigma-Aldrich, 99.8%) were added. The sprio-MeOTAD solution was spin-coated on the perovskite film at 5000 rpm for 30 s. Finally, gold electrode was thermally evaporated onto the spiro-MeOTAD-coated film to a thickness of ~60 nm. *Characterization:* The morphological characterization of the TiO₂ NRs was tested by scanning electron microscopy (SEM) (FEI Quanta200F scanning electron microscope) and transmission electron microscopes).

Lattice structural information was obtained on a Tecnai G2 spirit (FEI Company) instrument operated at 100 kV. The crystal phase was identified by X-ray diffraction (XRD) utilizing Rigaku MiniFlex diffractometer with a CuK α irradiation source at a scanning speed of 5 deg/min. UV–vis absorption measurement were carried out on a Varian Cary 5000UV–vis spectrophotometer. Raman spectrum of TiO₂ NRs was obtained on Renishaw inVia confocal Raman spectrometer.

The thickness of TiO_2 NR films (see Figure 3) are measured by surface profiling system DEKTAK 150.

The photocurrent density–voltage (J-V) characteristics of the solar cells were measured using a Keithley 2400 Source under illumination of a simulated sunlight (AM 1.5, 100 mW/cm2) provided by a solar simulator (Newport 69907) with an AM 1.5 filter. A black metal aperture of 0.09 cm² was used during the measurement to define the active area of the device and avoid light scattering through the sides. The incident photon-to-current efficiency (IPCE) was measured at DC mode with a 1/4m double monochromator (Crowntech DK242), a multimeter (Keithley 2000), and a light source (tungsten-halogen lamp, 150 W). The monochromatic light intensity for IPCE efficiency was calibrated with a reference silicon photodiode.

Figure S1 SEM images of TiO₂ nanoparticles synthesized with 25 mM Na₂EDTA, 33.0 mM TTIP (10.0 μ l/ml aqueous solution), 2.5 vol.% glycerol in aqueous solution and growth time 3 h.

Figure S2 Cross-sectional SEM image of a perovskite solar cell device based on ~ 1.1 µm TiO₂ NR film.

Figure S3 XRD pattern for the sample of ~1.1 μm TiO_2 NRs/ CH_3NH_3PbI_3

Thickness	J _{sc}	Voc	FF	η	Thickness	J _{sc}	Voc	FF	η
μm	mA/cm ²	V	%	%	μm	mA/cm ²	V	%	%
0.7	17.6	0.92	59.0	9.5	1.8	13.9	0.88	43.2	5.3
0.7	18.1	0.97	60.0	10.5	1.8	12.8	0.89	41.8	4.8
0.7	17.4	0.96	57.9	9.7	1.8	13.4	0.82	46.7	5.1
0.7	17.6	0.96	58.2	9.8	1.8	15.5	0.86	47.1	6.3
0.7	18.6	0.97	61.5	11.1	1.8	15.7	0.86	45.4	6.1
0.7	17.6	0.96	59.1	10.0	1.8	14.4	0.86	43.8	5.4
0.7	17.9	0.96	62.9	10.8	1.8	15.1	0.84	43.0	5.5
0.7	17.7	0.94	59.6	9.9	1.8	15.7	0.87	50.6	6.9
0.7	17.7	0.96	58.4	9.9	1.8	15.2	0.86	50.2	6.6
0.7	17.9	0.96	60.3	10.3	1.8	16.0	0.86	51.0	7.0
1.1	18.3	0.98	61.6	11.0	1.8	15.5	0.83	50.3	6.5
1.1	18.0	0.93	64.8	10.8	1.8	16.4	0.89	51.9	7.6
1.1	17.6	0.96	64.7	10.9	1.8	16.2	0.92	52.1	7.8
1.1	17.4	0.92	63.3	10.1	1.8	16.6	0.91	51.6	7.8
1.1	17.7	0.93	63.2	10.4	1.8	15.6	0.92	47.7	6.9
1.1	18.4	0.90	64.6	10.7					
1.1	18.4	0.89	62.4	10.2					
1.1	18.0	0.89	62.9	10.1					
1.1	18.1	0.88	61.9	9.9					
1.1	18.0	0.96	62.4	10.7					
1.4	16.8	0.90	52.3	7.9					
1.4	16.4	0.89	46.8	6.8					
1.4	16.9	0.95	49.0	7.9					
1.4	16.7	0.93	44.7	6.9					
1.4	16.9	0.91	56.4	8.7					
1.4	17.3	0.93	56.2	9.1					
1.4	17.7	0.86	51.9	7.9					
1.4	17.8	0.86	50.7	7.8					
1.4	17.0	0.87	49.3	7.3					
1.4	16.8	0.92	50.5	7.8					

Table S1 All the J-V data for the studied devices at different NR film thicknesses (0.7~1.8 $\mu m)$

Figure S4 UV-vis absorption spectra for a) FTO/TiO₂ NRs and b) FTO/TiO₂ NRs/CH₃NH₃PbI₃ with different NR film thickness.

Figure S5 Internal quantum efficiency (IQE) spectrum for the perovskite solar cells base on different NR film thickness.

Figure S6 The J-V hysteresis depending on NR thickness: a) 0.7 μ m, b) 1.1 μ m, c) 1.4 μ m and d) 1.8 μ m. The device was scanned from forward bias to short circuit (FB-SC, red) and from short circuit to forward (SC-FB, blue) under simulated AM1.5G solar irradiation of 100 mW/cm² with a scan rate of ~0.1 V/s.